Skip to main content
Log in

Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

A metakaolin (Mk)-based geopolymer cement from Tunisian Mk mixed with different amounts of silica fume (SiO2/Al2O3 molar ratio varying between 3.61 and 4.09) and sodium hydroxide (10 M) and without any alkali silicate solution, is developed in this work. After the samples were cured at room temperature under air for 28 d, they were analyzed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, environmental scanning electron microscopy, mercury intrusion porosimetry, 27Al and 29Si nuclear magnetic resonance (NMR) spectroscopy, and compression testing to establish the relationship between microstructure and compressive strength. The XRD, FTIR, and 27Al and 29Si NMR analyses showed that the use of silica fume instead of alkali silicate solutions was feasible for manufacturing geopolymer cement. The Mk-based geopolymer with a silica fume content of 6wt% (compared with those with 2% and 10%), corresponding to an SiO2/Al2O3 molar ratio of 3.84, resulted in the highest compressive strength, which was explained on the basis of its high compactness with the smallest porosity. Silica fume improved the compressive strength by filling interstitial voids of the microstructure because of its fine particle size. In addition, an increase in the SiO2/Al2O3 molar ratio, which is controlled by the addition of silica fume, to 4.09 led to a geopolymer with low compressive strength, accompanied by microstructures with high porosity. This high porosity, which is responsible for weaknesses in the specimen, is related to the amount of unreacted silica fume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mustafa, A. Bakri, H. Mohammed, H. Kamarudin, I.K. Niza, and Y. Zarina, Review on fly ash-based geopolymer concrete without Portland Cement, J. Eng. Technol. Res., 3(2011), No. 1, p. 1.

    Google Scholar 

  2. M.A. Villaquirán-caicedo, R.M. de Gutiérrez, S. Sulekar, C. Davis, and J.C. Nino, Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources, Appl. Clay Sci., 118(2015), p. 276.

    Article  Google Scholar 

  3. J. Davidovits, Properties of geopolymer cements, [in] First International Conference on Alkaline Cements and Concretes, Kiev, 1994, p. 131.

    Google Scholar 

  4. H.T. Huynh, New generation geopolymers, [in] 2nd French Seminar on Geopolymers, Clermont-Ferrand, 2013.

    Google Scholar 

  5. Y.M. Liew, C.Y. Heah, A.B. Mohd Mustafa, and H. Kamarudin, Structure and properties of clay-based geopolymer cements: A review, Prog. Mater. Sci., 83(2016), p. 595.

    Article  Google Scholar 

  6. P. Zhang, Y.X. Zheng, K.J. Wang, and J.P. Zhang, A review on properties of fresh and hardened geopolymer mortar, Composites Part B, 152(2018), p. 79.

    Article  Google Scholar 

  7. C. Dupuy, A. Gharzouni, N. Texier-Mandoki, X. Bourbon, and S. Rossignol, Thermal resistance of argillite-based alkali-activated materials. Part 1: Effect of calcination processes and alkali cation, Mater. Chem. Phys., 217(2018), p. 323.

    Article  Google Scholar 

  8. M.I. Khan, H.U. Khan, K. Azizli, S. Sufian, Z. Man, A.A. Siyal, N. Muhammad, and M.F. ur Rehman, The pyrolysis kinetics of the conversion of Malaysian kaolin to metakaolin, Appl. Clay Sci., 146(2017), p. 152.

    Article  Google Scholar 

  9. J.S. Geng and Q. Sun, Effects of high temperature treatment on physical-thermal properties of clay, Thermochim. Acta, 666(2018), p. 148.

    Article  Google Scholar 

  10. V. Medri, S. Fabbri, J. Dedecek, Z. Sobalik, Z. Tvaruzkova, and A. Vaccari, Role of the morphology and the dehydroxylation of metakaolins on geopolymerization, Appl. Clay Sci., 50(2010), No. 4, p. 538.

    Article  Google Scholar 

  11. Y.M. Liew, H. Kamarudin, A.M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, and C.Y. Heah, Processing and characterization of calcined kaolin cement powder, Constr. Build. Mater., 30(2012), p. 794.

    Article  Google Scholar 

  12. Y.M. Liew, H. Kamarudin, A.M. Mustafa Al Bakri, M. Binhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, and C.Y. Heah, Influence of solids-to-liquid and activator ratios on calcined kaolin cement powder, Phys. Procedia, 22(2011), p. 312.

    Article  Google Scholar 

  13. C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M Bnhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, and Y.M. Liew, Kaolin-based geopolymers with various NaOH concentrations, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 313.

    Article  Google Scholar 

  14. P. De Silva, K. Sagoe-Crenstil, and V. Sirivivatnanon, Kinetics of geopolymerization: Role of Al2O3 and SiO2, Cem. Concr. Res., 37(2007), No. 4, p. 512.

    Article  Google Scholar 

  15. F.N. Okoye, J. Durgaprasad, and N.B. Singh, Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete, Ceram. Int., 42(2015), No. 2, p. 3000.

    Article  Google Scholar 

  16. D. Dutta, S. Thokchom, P. Ghosh, and S. Ghosh, Effect of silica fume additions on porosity of fly ash geopolymers, J. Eng. Appl. Sci., 5(2010), No. 10, p. 74.

    Google Scholar 

  17. C.S. Poon, S.C. Kou, and L. Lam, Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete, Constr. Build. Mater., 20(2006), No. 10, p. 858.

    Article  Google Scholar 

  18. P. Duan, C.J. Yan, and W. Zhou, Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle, Cem. Concr. Compos., 78(2017), p. 108.

    Article  Google Scholar 

  19. M. Uysal, M.M. Al-mashhadani, Y. Aygörmez, and O. Canpolat, Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars, Constr. Build. Mater., 176(2018), p. 271.

    Article  Google Scholar 

  20. B.A. Latella, D.S. Perera, D. Durce, E.G. Mehrtens, and J. Davis, Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al ≈ 2 and Na/Al ≈ 1, J. Mater. Sci., 43(2008), No. 8, p. 2693.

    Article  Google Scholar 

  21. M. Rostami and K. Behfarnia, The effect of silica fume on durability of alkali activated slag concrete, Constr. Build. Mater., 134(2017), p. 262.

    Article  Google Scholar 

  22. D. Panias, I.P. Giannopoulou, and T. Perraki, Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers, Colloids Surf. A, 301(2007), No. 1–3, p. 246.

    Article  Google Scholar 

  23. Z.H. Zhang, X. Yao, H.J. Zheng, and C. Yue, Role of water in the synthesis of calcined kaolin-based geopolymer, Appl. Clay Sci., 43(2009), No. 2, p. 218.

    Article  Google Scholar 

  24. J.G.S. van Jaarsveld and J.S.J. van Deventer, Effect of the alkali metal activator on the properties of fly ash based geopolymers, Ind. Eng. Chem. Res., 38(1999), No. 10, p. 3932.

    Article  Google Scholar 

  25. P.N. Lemougna, A.B. Madi, E. Kamseu, U.C. Melo, M.P. Delplancke, and H. Rahier, Influence of the processing temperature on the compressive strength of Na activated lateritic soil for building applications, Constr. Build. Mater., 65(2014), p. 60.

    Article  Google Scholar 

  26. A.M.M. Al Bakri, H. Kamarudin, M. Bnhussain, J. Liyana, and C.M. Ruzaidi Ghazali, Nano geopolymer for sustainable concrete using fly ash synthesized by high energy ball milling, Appl. Mech. Mater., 313–314(2013), p. 169.

    Article  Google Scholar 

  27. S.A. Bernal, E.D. Rodríguez, R. Mejía de Gutiérrez, M. Gordillo, and J.L. Provis, Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends, J. Mater. Sci., 46(2011), No. 16, p. 5477.

    Article  Google Scholar 

  28. T. Revathi, R. Jeyalakshmi, and N. P. Rajamane, Study on the role of n-SiO2 incorporation in thermo-mechanical and microstructural properties of ambient cured FA-GGBS geopolymer matrix, Appl. Surf. Sci., 449(2018), p. 322.

    Article  Google Scholar 

  29. C. Kuenzel, L.M. Grover, L. Vandeperre, A.R. Boccaccini, and C.R. Cheeseman, Production of nepheline/quartz ceramics from geopolymer mortars, J. Eur. Ceram. Soc., 33(2013), No. 2, p. 251.

    Article  Google Scholar 

  30. G. Kakali, T. Perraki, S. Tsivilis, and E. Badogiannis, Thermal treatment of kaolin: The effect of mineralogy on the pozzolanic activity, Appl. Clay Sci., 20(2001), No. 1–2, p. 73.

    Article  Google Scholar 

  31. S. Ahmari, X. Ren, V. Toufigh, and L.Y. Zhang, Production of geopolymeric binder from blended waste concrete powder and fly ash, Constr. Build. Mater., 35(2012), p. 718.

    Article  Google Scholar 

  32. W.K.W. Lee and J.S.J. van Deventer, Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates, Langmuir, 19(2003), No. 21, p. 8726.

    Article  Google Scholar 

  33. Q. Wan, F. Rao, S.X. Song, D.F. Cholico-González, and N.L. Ortiz, Combination formation in the reinforcement of meta-kaolin geopolymers with quartz sand, Cem. Concr. Compos., 80(2017), p. 115.

    Article  Google Scholar 

  34. K. Gao, K.L. Lin, D.Y. Wang, H.S. Shiu, C.L. Hwang, and T.W. Cheng, Effects of nano-SiO2 on setting time and compressive strength of alkali- activated metakaolin-based geopolymer, Open Civ. Eng. J., 7(2013), p. 84.

    Article  Google Scholar 

  35. W.K.W. Lee and J.S.J. van Deventer, Structural reorganisation of class F fly ash in alkaline silicate solutions, Colloids Surf. A, 211(2002), No. 1, p. 49.

    Article  Google Scholar 

  36. T. Bakharev, Geopolymeric materials prepared using Class F fly ash and elevated temperature curing, Cem. Concr. Res., 35(2005), No. 6, p. 1224.

    Article  Google Scholar 

  37. J. Rocha and J. Klinowski, 29Si and 27Al magic-angle-spinning NMR studies of the thermal transformation of kaolinite, Phys. Chem. Miner., 17(1990), No. 2, p. 179.

    Article  Google Scholar 

  38. P.S. Singh, M. Trigg, I. Burgar, and T. Bastow, Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR, Mater. Sci. Eng. A, 396(2005), No. 1–2, p. 392.

    Article  Google Scholar 

  39. F. Škvára, L. Kopecký, J. Němeček, and Z. Bittnar, Microstructure of geopolymer materials based on fly ash, Ceram. Silik., 50(2006), No. 4, p. 208.

    Google Scholar 

  40. A. Bourlon, Physico-chimie et Rhéologie de Géopolymères Frais Pour la Cimentation des Puits Pétroliers [Dissertation], Pierre et Marie Curie University, Paris, 2010.

    Google Scholar 

  41. M.A. Soleimani, R. Naghizadeh, A.R. Mirhabibi, and F. Golestanifard, Effect of calcination temperature of the kaolin and molar Na2O/SiO2 activator ratio on physical and microstructural properties of metakaolin based geopolymers, Iran. J. Mater. Sci. Eng., 9(2012), No. 4, p. 43.

    Google Scholar 

  42. P. Chindaprasirt, T. Chareerat, and V. Sirivivatnanon, Workability and strength of coarse high calcium fly ash geopolymer, Cem. Concr. Compos., 29(2007), No. 3, p. 224.

    Article  Google Scholar 

  43. Y.S. Zhang, W. Sun, and Z.J. Li, Composition design and microstructural characterization of calcined kaolin-based geopolymer cement, Appl. Clay Sci., 47(2010), No. 3–4, p. 271.

    Google Scholar 

  44. C.K. Ma, A.Z. Awang, and W. Omar, Structural and material performance of geopolymer concrete: A review, Constr. Build. Mater., 186(2018), p. 90.

    Article  Google Scholar 

  45. T. da S. Rocha, D.P. Dias, F.C.C. França, R.R. de S. Guerra, and L.R. da C. de O. Marques, Metakaolin-based geopolymer mortars with different alkaline activators (Na+ and K+), Constr. Build. Mater., 178(2018), p. 453.

    Article  Google Scholar 

  46. P. Duan, Z.G. Shui, W. Chen, and C.H. Shen, Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete, Constr. Build. Mater., 44(2013), p. 1.

    Article  Google Scholar 

Download references

Acknowledgement

The authors are pleased to acknowledge the Tunisian Ministry of Higher Education and Scientific Research for its help in financing internships in France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Nmiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nmiri, A., Duc, M., Hamdi, N. et al. Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers. Int J Miner Metall Mater 26, 555–564 (2019). https://doi.org/10.1007/s12613-019-1764-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1764-2

Keywords

Navigation