Skip to main content

Advertisement

Log in

Effects of marble addition on the fresh, physical, mechanical, and optical microscopic properties of metakaolin-based geopolymer binders

  • Technical Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

To contribute to the reduction of the destruction of the ozone layer by greenhouse gases generated by carbon dioxide (CO2) related to the production of Portland cement clinker and at the same time to fight again the environmental disaster generated by Portland cement by its very high energy consumption, the depletion of our limestone deposits; the combined substitutions of metakaolin and marble in Portland cement were investigated in this study. To this end, we have substituted metakaolin by marble powders from 0 to 60% and then we activated these mixtures, i.e., metakaolin and marble powders with the combinations of sodium silicate and sodium hydroxide (NaOH) solutions at various molarities of 3 M, 5 M and 10 M. On these mixtures or samples, the setting times, compressive strength, linear shrinkage, water absorption and apparent density tests were conducted. The microstructure by optical microscopy analysis was also carried out. The findings revealed that the addition of marble below 50% leads to a decrease in the initial setting time with the increase in molarity of the sodium hydroxide (NaOH) solution while the apparent density of pastes increased. It is also shown that marble addition enhanced compressive strength of products contributed to the densification of the matrices of final products. Also, the results showed that up to 60% marble can substitute metakaolin in geopolymers; compressive strength had better properties when 10 M NaOH was used. The highest linear shrinkages were found at 45% and 60% of marble incorporated at 7 and 14 days of curing when 5 M NaOH was used. The best water absorptions were found at 15% of marble addition with all the three (3) molarities of 3 M, 5 M and 10 M NaOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Davidovits et Davidovics (1996) Geopolymer chemistry and Application Alkaline alumino-silicate geopolymeric matrix for composite

  2. Sagoe-Crentsil K, Brown T, Taylor A (2013) Drying shrinkage and creep performance of geopolymer concrete. J Sustain Cement-Based Mater 2(2013):35–42

    Article  Google Scholar 

  3. Cheng TW, Chiu JP (2003) Fire—resistant geopolymer produced by granulated blast furnace slag. Miner Eng 16:205–210

    Article  Google Scholar 

  4. Kong DLY, Sanjayan JG (2008) Damage behavior of geopolymer composites exposed to elevated temperatures. Cem Concr Compos 30(10):986–991

    Article  Google Scholar 

  5. Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933

    Article  Google Scholar 

  6. Kong DLY, Sanjayan JG (2010) Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res 40(2010):334–339

    Article  Google Scholar 

  7. Sarker PK, Kelly S, Yao Z (2014) Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater Des 63(2014):584–592

    Article  Google Scholar 

  8. Sarker PK, McBeath S (2015) Fire endurance of steel reinforced fly ash geopolymer concrete elements. Constr Build Mater 90(2015):91–98

    Article  Google Scholar 

  9. Luukkonena T, Abdollahnejada Z, Yliniemia J, Kinnunena P, Illikainena M (2018) One-part alkali-activated materials: a review. Cem Concr Res 103(2018):21–34

    Article  Google Scholar 

  10. Aiken TA, Sha W, Kwasny J, Soutsos MN (2017) Resistance of geopolymer and Portland cement based systems to silage effluent attack. Cem Concr Res 92(2017):56–65

    Article  Google Scholar 

  11. Albitar M, Mohamed Ali MS, Visintin P, Drechsler M (2017) Durability evaluation of geopolymer and conventional concretes. Constr Build Mater 136(2017):374–385

    Article  Google Scholar 

  12. Bakharev T (2005) Resistance of geopolymer materials to acid attack. Cem Concr Res 35:658–670

    Article  Google Scholar 

  13. Skvara F, Jilek T, Kopecky L (2005) Geopolymer materials based on fly ash. Ceram Silik 49(3):195–204

    Google Scholar 

  14. Bakharev T (2005) Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem Concr Res 35:1233–1246

    Article  Google Scholar 

  15. Naghizadeh A, Ekolu SO (2020) Effects of compositional and physico-chemical mix design parameters on properties of fly ash geopolymer mortars. SILICON. https://doi.org/10.1007/s12633-020-00799-2

    Article  Google Scholar 

  16. Fernandez-Jimenez A, Puertas F (2002) The alkali—silica reaction in alkali—activated granulated slagmortars with reactive aggregate. Cem Concr Res 32:1019–1024

    Article  Google Scholar 

  17. Fernandez-Jimenez A, Garcia-Lodeiro I, Palomo A (2007) Durability of alkali—activated fly ash cementitious materials. J Mater Sci 42:3055–3065

    Article  Google Scholar 

  18. Slaty F, Khoury H, Rahier H, Wastiels J (2015) Durability of alkali activated cement produced from kaolinitic clay. Appl Clay Sci 104:229–237

    Article  Google Scholar 

  19. Naghizadeh A, Ekolu SO (2017b) Investigation of mixture factors influencing alkali—silica reaction in fly ash—based geopolymer mortars. In: 71st RILEM Annual Week ICACMS 2017, 3–8 September, Chennai, India, pp 395–400

  20. Davidovits J (1991) Geopolymers: Inorganic Polymeric New Materials. J Thermal Analysis 37:1633–1656. Existe en [PDF] 12 en langue anglaise dans la Library, Geopolymer Institute

  21. Fan F, Liu Z, Xu G, Peng MH, Cai CS (2020) Mechanical and thermal properties of fly ash based geopolymers. Constr Build Mater 2019:66–81

    Google Scholar 

  22. El Habib Benes sahraoui, fiche technique PRISME N°1, «Le diagnostic énergétique d’une cimenterie» Institut de l’Énergie et de l’Environnement de la Francophonie

  23. Fernando PT, João CG, Said J (2010) Durability and environmental performance of alkali-activated tungsten mine waste mud mortars. J Mater Civ Eng 22(9):897–904

    Article  Google Scholar 

  24. Bikoko TGLJ, Tchamba JC, Katte YV, Deh KD (2022) Effects of 0–30% wood ashes as a substitute of cement on the strength of concretes. In: Construction technologies and architecture. 4th International conference on bio-based building materials. Trans Tech Publications Ltd. vol 1, pp 51–60. https://doi.org/10.4028/www.scientific.net/cta.1.51

  25. Bikoko TGLJ (2021) A cameroonian study on mixing concrete with wood ashes: effects of 0–30% wood ashes as a substitute of cement on the strength of concretes. Revue des Compos Matér Avancés. 31(5):275–282. https://doi.org/10.18280/rcma.310502

    Article  Google Scholar 

  26. Chowdhury S, Mishra M, Suganya OM (2015) The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: an overview. Ain Shams Eng J 6(2):429–437. https://doi.org/10.1016/j.asej.2014.11.005

    Article  Google Scholar 

  27. Lahoti M, Wong KK, Tan KH, Yang EH (2018) Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure. Mater Des 154:8–19

    Article  Google Scholar 

  28. Chuah S, Duan WH, Pan Z, Hunter E, Korayem AH, Zhao XL et al (2016) The properties of fly ash based geopolymer mortars made with dune sand. Mater Des 92:571–578

    Article  Google Scholar 

  29. Nazari A, Bagheri A, Sanjayan JG, Dao M, Mallawa C, Zannis P et al (2019) Thermal shock reactions of Ordinary Portland cement and geopolymer concrete: microstructural and mechanical investigation. Constr Build Mater 196:492–498

    Article  Google Scholar 

  30. Kupwade-Patil K, Allouche EN, Watts CA, Badar MS (2013) Selected studies of the durability of fly ash – based geopolymer concretes. J ASTM Int Geopolymer Binder Syst 8:144–164

    Article  Google Scholar 

  31. Junaid MT, Kayali O, Khennane A (2017) Response of alkali activated low calcium fly-ash based geopolymer concrete under compressive load at elevated temperatures. Mater Struct 50:1–10

    Google Scholar 

  32. Gunasekera C, Setunge S, Law DW (2019) Creep and drying shrinkage of different fly-ash-based geopolymers. ACI Mater J 116(1):39–49

    Google Scholar 

  33. Thompson A, Saha AK, Sarker PK (2019) Comparison of the alkali-silica reactions of ferronickel slag aggregate in fly ash geopolymer and cement mortars. Eur J Environ Civil Eng. https://doi.org/10.1080/19648189.2019.1686068

    Article  Google Scholar 

  34. Naghizadeh A, Ekolu SO, Musonda I (2020) High temperature heat - treatment (HTHT) for partial mitigation of alkali attack in hardened fly ash geopolymer binders. Case Stud Constr Mater 12:e00341. https://doi.org/10.1016/j.cscm.2020.e00341

    Article  Google Scholar 

  35. Naghizadeh A, Ekolu SO (2019) Behaviour of fly ash geopolymer binders under exposure to alkaline media. Asian J Civ Eng 20(6):785–798

    Article  Google Scholar 

  36. Koshy N, Singh DN (2016) Textural alterations in coal fly ash due to alkali activation. J Mater Civ Eng 28(11):1–7

    Article  Google Scholar 

  37. Naghizadeh A, Ekolu SO (2019) Method for comprehensive mix design of fly ash geopolymer mortars. Constr Build Mater 202:704–717

    Article  Google Scholar 

  38. Naghizadeh A, Ekolu SO (2022) Activator-related effects of sodium hydroxide storage solution in standard testing of fly ash geopolymer mortars for alkali–silica reaction. Mater Struct 55:22. https://doi.org/10.1617/s11527-021-01875-8

    Article  Google Scholar 

  39. Daniel AJ, Sivakamasundari S, Abhilash D (2017) Comparative study on the behaviour of geopolymer concrete with hybrid fibers under static cyclic loading. Procedia Eng 173:417–423

    Article  Google Scholar 

  40. Kathirvel P, Kaliyaperumal SRM (2016) Influence of recycled concrete aggregates on the flexural properties of reinforced alkali activated slag concrete. Constr Build Mater 102:51–58

    Article  Google Scholar 

  41. Puertas F, Palacios M, Gil-Maroto A, Vázquez T (2009) Alkali—aggregate behaviour of alkali - activated slag mortars: effect of aggregate type. Cem Concr Compos 31(5):277–284

    Article  Google Scholar 

  42. Wang Q, Ding ZY, Da J, Ran K, Sui ZT (2011) Factors influencing bonding strength of geopolymer-aggregate interfacial transition zone. Adv Mater Res 224:1–7

    Article  Google Scholar 

  43. Kabirova A, Uysal M, Hüsem M, Aygörmez Y, Dehghanpour H, Pul S, Canpolat O (2022) Physical and mechanical properties of metakaolin-based geopolymer mortars containing various waste powders. Eur J Environ Civ Eng. https://doi.org/10.1080/19648189.2022.2050303

    Article  Google Scholar 

  44. Komnitsas K, Soultana A, Bartzas G (2021) Marble waste valorization through Alkali activation. Minerals 11:1–16. https://doi.org/10.3390/min11010046

    Article  Google Scholar 

  45. Coppola B, Palmero P, Montanaro L, Tulliani J-M (2019) Alkali-activation of marble sludge: Influence of curing conditions and waste glass addition. J Eur Ceram Soc 40:3776–3787

    Article  Google Scholar 

  46. Ilker T (2016) Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes. Constr Build Mater 127:607–617

    Article  Google Scholar 

  47. Coppola B, Palmero P, Montanaro L, Tulliani JM (2020) Alkali-activation of marble sludge: Influence of curing conditions and waste glass addition. J Eur Ceram Soc 40:3776–3787

    Article  Google Scholar 

  48. Colangelo F, Roviello G, Ricciotti L, Ferrándiz-Mas V, Messina F, Ferone C, Cheeseman CR (2018) Mechanical and thermal properties of lightweight geopolymer composites. Cem Concr Compos 86:266–272

    Article  Google Scholar 

  49. Simão L, Hotza D, Ribeiro MJ, Novais RM, Montedo ORK, Raupp-Pereira F (2020) Development of new geopolymers based on stone cutting waste. Constr Build Mater 257:119525

    Article  Google Scholar 

  50. Thakur AK, Pappu A, Thakur V (2019) Synthesis and characterization of new class of geopolymer hybrid composite materials from industrial wastes. J Clean Prod 230:11–20

    Article  Google Scholar 

  51. Kaze CR, Adesina A, Lecomte-Nana GL, Assaedi H, Alomayri T, Kamseu E, Chinje Melo UC (2022) Physico-mechanical and microstructural properties of geopolymer binders synthesized with metakaolin and meta-halloysite as precursors. Clean Mater 4:100070

    Article  Google Scholar 

  52. Salihoglu NK, Salihoglu G (2018) marble sludge recycling by using geopolymerization technology. J Hazard Toxic Radioact Waste 22:0401801

    Article  Google Scholar 

  53. Yip CK, Provis J, Lukey GC, Van Deventer JSJ (2008) Carbonate mineral addition to metakaolin-based geopolymers. Cem Concr Compos 30:979–985

    Article  Google Scholar 

  54. Boum Essama RB, Kaze CR, Deutou Nemaleu JG, Djaoyang VB, Nkwaju Yanou R, Lemougna Ninla P, Mvondo Owono F, Kamseu E (2020) Thermal behaviour of metakaolin–bauxite blends geopolymer: microstructure and mechanical properties. SN Appl Sci 2:1358. https://doi.org/10.1007/s42452-020-3138-9

    Article  Google Scholar 

  55. Mascarin L, Ez-zaki H, Garbin E, Bediako M, Valentini L (2022) Mitigating the ecological footprint of alkali-activated calcined clays by waste marble addition. Cem Concr Compos 127:104382

    Article  Google Scholar 

  56. Cwirzen A, Provis JL, Penttala V, Habermehl-Cwirzen K (2014) The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers. Constr Build Mater 66:53–62

    Article  Google Scholar 

  57. Frayyeh QJ, Kamil MH (2021) The effect of adding fibers on dry shrinkage of geopolymer concrete. Civ Eng J 7:2099–2108. https://doi.org/10.28991/cej-2021-03091780

    Article  Google Scholar 

  58. Balamuralikrishnan R, Saravanan J (2021) Effect of addition of alccofine on the compressive strength of cement mortar cubes. Emerg Sci J 5:155–170. https://doi.org/10.28991/esj-2021-01265

    Article  Google Scholar 

  59. Kumar G, Mishra SS (2021) Effect of GGBFS on workability and strength of alkali-activated geopolymer concrete. Civ Eng J 7:1036–1049. https://doi.org/10.28991/cej-2021-03091708

    Article  Google Scholar 

  60. Lee W, Lin K, Chang T, Ding Y, Cheng T (2020) Sustainable development and performance evaluation of marble-waste-based geopolymer concrete. Polymers 12:1924. https://doi.org/10.3390/polym12091924

    Article  Google Scholar 

  61. Abhishek HS, Prashant S, Kamath MV, Kumar M (2022) Fresh mechanical and durability properties of alkali-activated fly ash-slag concrete: a review. Innov Infrastruct Solut 7(116):1–14. https://doi.org/10.1007/s41062-021-00711-w

    Article  Google Scholar 

  62. Njoya D (2005) Minéralogie, propriétés physiques et mécaniques des céramiques des argiles de Mayoum (Cameroun), Thèse de Doctorat 3ème cycle. Université de Yaoundé I, Yaoundé, Cameroun, p 2005

    Google Scholar 

  63. Njoya A, Nkombou C, Grosbois C, Njopwouo D, Njoya D, Courtin-Nomade A, Yvon J, Martin F (2006) Genesis of Mayouom deposit (Western Cameroon). Appl Clay Sci 32:125–140

    Article  Google Scholar 

  64. Ndigui Billong (2011) Optimisation des propriétés des matériaux à base de liants chaux-pouzzolane: effet de la chaux hydratée, de l’hydroxyde de sodium, de l’eau et du sable ou de la latérite

  65. Bélinga SME(1983) Géologie dynamique externe des pays tropicaux de la terre Afrique–Amérique–Asie

  66. Gweth PN (2001) Ressources minérales du Cameroun, SOPECAM Yaoundé

  67. Kahn H, Tassinari MML, Ratti G (2003) Characterization of bauxite fines aiming to minimize their iron content. Min Eng 16:1313–1315

    Article  Google Scholar 

  68. Wouatong ASL, Kenmoe ORM, Ngapgue F, Katte V, Kamgang VBK (2017) A geological and physico—mechanical characterization of marble of the Bidzar quarry North-Cameroon. British J Appl Sci Technol 19(5):1–11

    Article  Google Scholar 

  69. Tchamba JC, Bikoko TGLJ (2016) Study of transfer properties on fresh cement pastes; laboratory experiments: discontinue measurements using a permeameter. J Mater Sci Res 5(2):29–38. https://doi.org/10.5539/jmsr.v5n2p29

    Article  Google Scholar 

  70. Bikoko TGLJ, Tchamba JC (2017) Filtration of fresh cement pastes. Electron J Geotech Eng 22(6):1791–1803

    Google Scholar 

  71. Tchamba JC, Bikoko TGLJ (2017) Methods of determining transfer properties of fresh cement pastes. Electron J Geotech Eng 21(7):2347–2370

    Google Scholar 

  72. Tchamba JC, Bikoko TGLJ, Okonta FN (2022) Study of hydraulic conductivity on fresh cement-based materials; laboratory experiments. Revue des Compos Matériaux Avancés. 32(2):53–60. https://doi.org/10.18280/rcma.320201

    Article  Google Scholar 

  73. EN 196-3+A1, Methods of testing cement- Part 3: Determination of setting times and soundness, British Standard Institution, 2010

  74. Criado M, Palomo A, Fernandez-Jiménez A (2005) Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel 84:2048–2054

    Article  Google Scholar 

  75. Elyamany HE, Elmoaty AEMA, Elshaboury AM (2018) Setting time and 7-day strength of geopolymer mortar with various binders. Constr Build Mater 187:974–983

    Article  Google Scholar 

  76. Rao GM (2015) Rao TG (2015) Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar. Arab J Sci Eng 40(11):3067–3074

    Article  Google Scholar 

  77. Malkawi AB, Nuruddin MF, Fanzi A, Almattarneh H, Mohammed BS (2016) Effects of alkaline solution on properties of the HCFA geopolymer mortars. Procedia Eng 148:710–717

    Article  Google Scholar 

  78. Hanjitsuman S, Hunpratub S, Thongbai P, Maensiri S, Sata V, Chindaprasirt P (2014) Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem Concr Compos 45:9–14

    Article  Google Scholar 

  79. Diaz EI, Allouche EN, Eklund S (2010) Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 89:992–996

    Article  Google Scholar 

  80. Bayiha BN, Billong N, Yamb E, Kaze RC, Nzengwa R (2019) Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Constr Build Mater 217:28–35

    Article  Google Scholar 

  81. Alonso A, Palomo A (2001) Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures. Cem Concr Res 31:25–30

    Article  Google Scholar 

  82. Granizo ML, Alonso S, Blanco-Varela MT, Palomo A (2002) Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction. J Am Ceram Soc 85:225–231

    Article  Google Scholar 

  83. Yip CK (2004) The role of calcium in geopolymerisation, Ph.D. Thesis, Department of Chemical and Biomolecular Engineering. The University of Melbourne, Australia

  84. Yip CK, Lukey GC, van Deventer JSJ (2005) The coexistence of geopolymeric gel and calcium silicate hydrates at the early stage of alkaline activation. Cem Concr Res 35:1688–1697

    Article  Google Scholar 

  85. Yip CK, Lukey GC, Provis JL, van Deventer JSJ (2008) Effect of calcium silicate sources on geopolymerisation. Cem Concr Res 38:554–564

    Article  Google Scholar 

  86. De Silva P, Sagoe-Crenstil K, Sirivivatnanon V (2007) Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem Concr Res 37:512–518. https://doi.org/10.1016/j.cemconres.2007.01.003

    Article  Google Scholar 

  87. Elimbi A, Tchakoute HK, Njopwouo D (2011) Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Constr Build Mater 25:2805–2812

    Article  Google Scholar 

  88. Temuujin J, Van Riessen A, Williams R (2009) Influence of calcium compounds on the mechanical properties of y ash geopolymer pastes. J Hazard Mater 167:82–88

    Article  Google Scholar 

  89. Tchakoute Kouamo H, Elimbi A, DiffoKenne BB, Mbey JA, Njopwouo D (2013) Synthesis of geopolymers from volcanic ash via the alkaline fusion method: effect of Al2O3/Na2O molar ratio of soda–volcanic ash. Ceram Int 39:269–276

    Article  Google Scholar 

  90. Chi MC, Chang JJ, Huang R (2012) Strength and drying shrinkage of alkali-activated slag paste and mortar. Adv Civ Eng 2012:1–7

    Article  Google Scholar 

  91. Venyite P, Makone EC, Kaze RC, Nana A, Nemaleu JGD, Kamseu E, Melo UC, Leonelli C (2021) Effect of combined metakaolin and basalt powder additions to laterite-based geopolymers activated by rice husk ash (RHA)/ NaOH solution. SILICON. https://doi.org/10.1007/s12633-021-00950-7

    Article  Google Scholar 

  92. Lavanya G, Jegan J (2015) Durability study on high calcium fly ash based geopolymer concrete. Adv Mater Sci Eng 2015:7. https://doi.org/10.1155/2015/731056

    Article  Google Scholar 

  93. Singh NB, Middendorf B (2020) Geopolymers as an alternative to Portland cement: an overview. Constr Build Mater 237(2020):117455

    Article  Google Scholar 

  94. Al Bakri AM, Kamarudin H, Binhussain M, Nizar I, Rafiza AR, Zarina Y (2013) Comparison of geopolymer fly ash and OPC to the strength of concrete. J Comput Theor Nanosci 19:3592–3595

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Théodore Gautier L. J. Bikoko.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikoko, T.G.L.J., Bayiha, B.N. Effects of marble addition on the fresh, physical, mechanical, and optical microscopic properties of metakaolin-based geopolymer binders. Innov. Infrastruct. Solut. 8, 3 (2023). https://doi.org/10.1007/s41062-022-00960-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-022-00960-3

Keywords

Navigation