Skip to main content
Log in

Recent progress in graphene-reinforced aluminum matrix composites

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Recent years witnessed a growing research interest in graphene-reinforced aluminum matrix composites (GRAMCs). Compared with conventional reinforcements of aluminum matrix composites (AMCs), graphene possesses many attractive characteristics such as extremely high strength and modulus, unique self-lubricating property, high thermal conductivity (TC) and electrical conductivity (EC), and low coefficient of thermal expansion (CTE). A lot of studies have demonstrated that the incorporation of graphene into Al or Al alloy can effectively enhance mechanical and physical properties of the Al matrix. The purpose of this work is aimed to trace recent development of GRAMCs. Initially, this paper covers a brief overview of fabrication methods of GRAMCs. Then, mechanical, tribological, thermal and electrical properties of recently developed GRAMCs are presented and discussed. Finally, challenges and corresponding solutions related to GRAMCs are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen S, Teng J, Luo H, et al. Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites. Materials Science & Engineering A, 2017, 697: 194–202

    Article  CAS  Google Scholar 

  2. Chen S, Fu D, Luo H, et al. Hot workability of PM 8009Al/Al2O3 particle-reinforced composite characterized using processing maps. Vacuum, 2018, 149: 297–305

    Article  CAS  Google Scholar 

  3. Bo G, Jiang F, Dong Z, et al. Revealing the influence of pre-precipitation microstructure on hot workability in an Al-Cu-Mg-Zr alloy. Materials Science & Engineering A, 2019, 755: 147–157

    Article  CAS  Google Scholar 

  4. ASM Handbook Volume 02: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International, 1990

  5. Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924

    Article  CAS  Google Scholar 

  6. Lee C, Wei X, Kysar, J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388

    Article  CAS  Google Scholar 

  7. Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907

    Article  CAS  Google Scholar 

  8. Liu J. Charging graphene for energy. Nature Nanotechnology, 2014, 9(10): 739–741

    Article  CAS  Google Scholar 

  9. Yoon D, Son Y W, Cheong H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Letters, 2011, 11(8): 3227–3231

    Article  CAS  Google Scholar 

  10. Cao M, Luo Y Z, Xie Y Q, et al. The influence of interface structure on the electrical conductivity of graphene embedded in aluminum matrix. Advanced Materials Interfaces, 2019, 6(13): 1900468

    Article  Google Scholar 

  11. Moghadam A D, Omrani E, Menezes P L, et al. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene — A review. Composites Part B: Engineering, 2015, 77: 402–420

    Article  Google Scholar 

  12. Awotunde M A, Adegbenjo A O, Obadele B A, et al. Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review. Journal of Materials Research and Technology, 2019, 8(2): 2432–2449

    Article  CAS  Google Scholar 

  13. Dixit S, Mahata A, Mahapatra D R, et al. Multi-layer graphene reinforced aluminum — Manufacturing of high strength composite by friction stir alloying. Composites Part B: Engineering, 2018, 136: 63–71

    Article  CAS  Google Scholar 

  14. Dasari B L, Morshed M, Nouri J M, et al. Mechanical properties of graphene oxide reinforced aluminium matrix composites. Composites Part B: Engineering, 2018, 145: 136–144

    Article  CAS  Google Scholar 

  15. Pourmand N S, Asgharzadeh H. Aluminum matrix composites reinforced with graphene: A review on production, microstructure, and properties. Critical Reviews in Solid State and Material Sciences, 2019, 45(4): 289–337

    Article  Google Scholar 

  16. Lu A, Zhao L, Liu Y, et al. Enhanced damping capacity in graphene-Al nanolaminated composite pillars under compression cyclic loading. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51(4): 1463–1468

    Article  CAS  Google Scholar 

  17. Han T, Li J, Zhao N, et al. Microstructure and properties of copper coated graphene nanoplates reinforced Al matrix composites developed by low temperature ball milling. Carbon, 2020, 159: 311–323

    Article  CAS  Google Scholar 

  18. Yu Z, Yang W, Zhou C, et al. Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method. Carbon, 2019, 141: 25–39

    Article  CAS  Google Scholar 

  19. Akçamli N, Küçükelyas B, Kaykilarli C, et al. Investigation of microstructural, mechanical and corrosion properties of graphene nanoplatelets reinforced Al matrix composites. Materials Research Express, 2019, 6(11): 115627

    Article  Google Scholar 

  20. Zeng X, Teng J, Yu J, et al. Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy. International Journal of Minerals Metallurgy and Materials, 2018, 25(1): 102–109

    Article  CAS  Google Scholar 

  21. Huang C Y, Hu S P, Chen K. Influence of rolling temperature on the interfaces and mechanical performance of graphene-reinforced aluminum-matrix composites. International Journal of Minerals Metallurgy and Materials, 2019, 26(6): 752–759

    Article  CAS  Google Scholar 

  22. Prakash P B, Raju K B, Venkatasubbaiah K, et al. Microstructure analysis and evaluation of mechanical properties of Al 7075 GNP’s composites. Materials Today: Proceedings, 2018, 5(6): 14281–14291

    CAS  Google Scholar 

  23. Dong Y F, Ren B H, Wang K, et al. Effects of graphene addition on the microstructure of 7075Al. Materials Research Express, 2020, 7(2): 026510

    Article  CAS  Google Scholar 

  24. Venkatesan S, Xavior M A. Characterization on aluminum alloy 7050 metal matrix composite reinforced with graphene nanoparticles. In: Procedia Manufacturing, 2019, 30: 120–127

    Article  Google Scholar 

  25. Das S, Kordijazi A, Akbarzadeh O, et al. An innovative process for dispersion of graphene nanoparticles and nickel spheres in A356 alloy using pressure infiltration technique. Engineering Reports, 2020, 2: 1–7

    Article  Google Scholar 

  26. Sharma A, Sharma V M, Sahoo B, et al. Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing. Journal of Manufacturing Processes, 2019, 37: 53–70

    Article  Google Scholar 

  27. Zare H, Jahedi M, Toroghinejad M R, et al. Compressive, shear, and fracture behavior of CNT reinforced Al matrix composites manufactured by severe plastic deformation. Materials & Design, 2016, 106: 112–119

    Article  CAS  Google Scholar 

  28. Kumar A P, Madhu H C, Pariyar A, et al. Friction stir processing of squeeze cast A356 with surface compacted graphene nanoplatelets (GNPs) for the synthesis of metal matrix composites. Materials Science & Engineering A, 2020, 769: 138517

    Article  Google Scholar 

  29. Huang Y, Bazarnik P, Wan D, et al. The fabrication of graphene-reinforced Al-based nanocomposites using high-pressure torsion. Acta Materialia, 2019, 164: 499–511

    Article  CAS  Google Scholar 

  30. Li Y, Feng Z, Huang L, et al. Additive manufacturing high performance graphene-based composites: A review. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105483

    Article  CAS  Google Scholar 

  31. Hu Z, Chen F, Xu J, et al. 3D printing graphene-aluminum nanocomposites. Journal of Alloys and Compounds, 2018, 746: 269–276

    Article  CAS  Google Scholar 

  32. Wu L, Zhao Z, Bai P, et al. Wear resistance of graphene nanoplatelets (GNPs) reinforced AlSi10Mg matrix composite prepared by SLM. Applied Surface Science, 2020, 503: 144156

    Article  CAS  Google Scholar 

  33. Tiwari J K, Mandal A, Sathish N, et al. Investigation of porosity, microstructure and mechanical properties of additively manufactured graphene reinforced AlSi10Mg composite. Additive Manufacturing, 2020, 33: 101095

    Article  CAS  Google Scholar 

  34. Zhou W W, Dong M Q, Zhou Z X, et al. In situ formation of uniformly dispersed Al4C3 nanorods during additive manufacturing of graphene oxide/Al mixed powders. Carbon, 2019, 141: 67–75

    Article  CAS  Google Scholar 

  35. Zhao Z Y, Bai P K, Misra R D K, et al. AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: Selective laser melting, interfacial microstructure and property analysis. Journal of Alloys and Compounds, 2019, 792: 203–214

    Article  CAS  Google Scholar 

  36. Zhao Z Y, Misra R D K, Bai P K, et al. Novel process of coating Al on graphene involving organic aluminum accompanying microstructure evolution. Materials Letters, 2018, 232: 202–205

    Article  CAS  Google Scholar 

  37. Zhao W, Zhao Z, Bai P, et al. The interfacial characteristics of graphene/Al4C3 in graphene/AlSi10Mg composites prepared by selective laser melting: First principles and experimental results. Materials, 2020, 13(3): 702

    Article  CAS  Google Scholar 

  38. Kelly A, Tyson W R. Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. Journal of the Mechanics and Physics of Solids, 1965, 13(6): 329–350

    Article  CAS  Google Scholar 

  39. Zhang Z, Chen D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scripta Materialia, 2006, 54(7): 1321–1326

    Article  CAS  Google Scholar 

  40. Wang J, Li Z, Fan G, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia, 2012, 66(8): 594–597

    Article  CAS  Google Scholar 

  41. Islam M, Khalid Y, Ahmad I, et al. Microstructural evaluation of inductively sintered aluminum matrix nanocomposites reinforced with silicon carbide and/or graphene nanoplatelets for tribological applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49A(7): 2963–2976

    Article  Google Scholar 

  42. Zhang Z W, Liu Z Y, Xiao B L, et al. High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing. Carbon, 2018, 135: 215–223

    Article  CAS  Google Scholar 

  43. Li J C, Zhang X X, Geng L. Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing. Materials & Design, 2018, 144: 159–168

    Article  CAS  Google Scholar 

  44. Jiang Y Y, Xu R, Tan Z Q, et al. Interface-induced strain hardening of graphene nanosheet/aluminum composites. Carbon, 2019, 146: 17–27

    Article  CAS  Google Scholar 

  45. Guan R, Wang Y, Zheng S, et al. Fabrication of aluminum matrix composites reinforced with Ni-coated graphene nanosheets. Materials Science & Engineering A, 2019, 754: 437–446

    Article  CAS  Google Scholar 

  46. Wang J, Zhang X, Zhao N, et al. In situ synthesis of copper-modified graphene-reinforced aluminum nanocomposites with balanced strength and ductility. Journal of Materials Science, 2019, 54(7): 5498–5512

    Article  CAS  Google Scholar 

  47. Hsieh C T, Ho Y C, Wang H H, et al. Mechanical and tribological characterization of nanostructured graphene sheets/A6061 composites fabricated by induction sintering and hot extrusion. Materials Science & Engineering A, 2020, 786: 138998

    Article  CAS  Google Scholar 

  48. Li M, Zhang Z, Gao H, et al. Formation of multilayer interfaces and the load transfer in graphene nanoplatelets reinforced Al matrix composites. Materials Characterization, 2020, 159: 110018

    Article  CAS  Google Scholar 

  49. Han T L, Liu E Z, Li J J, et al. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study. Journal of Materials Science & Technology, 2020, 46: 21–32

    Article  Google Scholar 

  50. Li J C, Zhang X X, Geng L. Effect of heat treatment on interfacial bonding and strengthening efficiency of graphene in GNP/Al composites. Composites Part A: Applied Science and Manufacturing, 2019, 121: 487–498

    Article  CAS  Google Scholar 

  51. Bhadauria A, Singh L K, Laha T. Effect of physio-chemically functionalized graphene nanoplatelet reinforcement on tensile properties of aluminum nanocomposite synthesized via spark plasma sintering. Journal of Alloys and Compounds, 2018, 748: 783–793

    Article  CAS  Google Scholar 

  52. Bhadauria A, Singh L K, Laha T. Combined strengthening effect of nanocrystalline matrix and graphene nanoplatelet reinforcement on the mechanical properties of spark plasma sintered aluminum based nanocomposites. Materials Science & Engineering A, 2019, 749: 14–26

    Article  CAS  Google Scholar 

  53. Khoshghadam-Pireyousefan M, Rahmanifard R, Orovcik L, et al. Application of a novel method for fabrication of graphene reinforced aluminum matrix nanocomposites: Synthesis, microstructure, and mechanical properties. Materials Science & Engineering A, 2020, 772: 138820

    Article  CAS  Google Scholar 

  54. Li P, Chen L, Cao B, et al. Hierarchical microstructure architecture: A roadmap towards strengthening and toughening reduced graphene oxide/2024Al matrix composites synthesized by flake powder thixoforming. Journal of Alloys and Compounds, 2020, 823: 153815

    Article  CAS  Google Scholar 

  55. Li M, Gao H Y, Liang J M, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Materials Characterization, 2018, 140: 172–178

    Article  CAS  Google Scholar 

  56. Shao P Z, Yang W S, Zhang Q, et al. Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method. Composites Part A: Applied Science and Manufacturing, 2018, 109: 151–162

    Article  CAS  Google Scholar 

  57. Shao P Z, Chen G Q, Ju B Y, et al. Effect of hot extrusion temperature on graphene nanoplatelets reinforced Al6061 composite fabricated by pressure infiltration method. Carbon, 2020, 162: 455–464

    Article  CAS  Google Scholar 

  58. Sharma A, Sharma V M, Paul J. Fabrication of bulk aluminum-graphene nanocomposite through friction stir alloying. Journal of Composite Materials, 2020, 54(1): 45–60

    Article  CAS  Google Scholar 

  59. Zhang S, Chen G Q, Qu T M, et al. Simultaneously enhancing mechanical properties and electrical conductivity of aluminum by using graphene as the reinforcement. Materials Letters, 2020, 265: 127440

    Article  CAS  Google Scholar 

  60. Xie Y M, Meng X C, Huang Y X, et al. Deformation-driven metallurgy of graphene nanoplatelets reinforced aluminum composite for the balance between strength and ductility. Composites Part B: Engineering, 2019, 177: 107413

    Article  CAS  Google Scholar 

  61. Liu X H, Li J J, Sha J W, et al. In-situ synthesis of graphene nanosheets coated copper for preparing reinforced aluminum matrix composites. Materials Science & Engineering A, 2018, 709: 65–71

    Article  Google Scholar 

  62. Liu X H, Li J J, Liu E Z, et al. Towards strength-ductility synergy with favorable strengthening effect through the formation of a quasi-continuous graphene nanosheets coated Ni structure in aluminum matrix composite. Materials Science & Engineering A, 2019, 748: 52–58

    Article  CAS  Google Scholar 

  63. Pu B W, Sha J W, Liu E Z, et al. Synergistic effect of Cu on laminated graphene nanosheets/AlCu composites with enhanced mechanical properties. Materials Science & Engineering A, 2019, 742: 201–210

    Article  CAS  Google Scholar 

  64. Jiang Y Y, Tan Z Q, Fan G L, et al. Reaction-free interface promoting strength-ductility balance in graphene nanosheet/Al composites. Carbon, 2020, 158: 449–455

    Article  CAS  Google Scholar 

  65. Archard J F. Contact and rubbing of flat surfaces. Journal of Applied Physics, 1953, 24(8): 981–988

    Article  Google Scholar 

  66. Xia H M, Zhang L, Zhu Y C, et al. Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering. International Journal of Minerals Metallurgy and Materials, 2020, 27(9): 1295–1300

    Article  CAS  Google Scholar 

  67. Baig Z, Mamat O, Mustapha M, et al. Surfactant-decorated graphite nanoplatelets (GNPs) reinforced aluminum nanocomposites: Sintering effects on hardness and wear. International Journal of Minerals Metallurgy and Materials, 2018, 25(6): 704–715

    Article  CAS  Google Scholar 

  68. Zhang J S, Chen Z X, Wu H, et al. Effect of graphene on the tribolayer of aluminum matrix composite during dry sliding wear. Surface & Coatings Technology, 2019, 358: 907–912

    Article  CAS  Google Scholar 

  69. Sharma A, Sharma V M, Paul J. A comparative study on microstructural evolution and surface properties ofgraphene/CNT reinforced Al6061-SiC hybrid surface composite fabricated via friction stir processing. Transactions of Nonferrous Metals Society of China, 2019, 29(10): 2005–2026

    Article  CAS  Google Scholar 

  70. Mohammadi S, Montazeri A, Urbassek H M. Geometrical aspects of nanofillers influence the tribological performance of Al-based nanocomposites. Wear, 2020, 444: 203117

    Article  Google Scholar 

  71. Zeng X, Yu J G, Fu D F, et al. Wear characteristics of hybrid aluminum matrix composites reinforced with well-dispersed reduced graphene oxide nanosheets and silicon carbide particulates. Vacuum, 2018, 155: 364–375

    Article  CAS  Google Scholar 

  72. Reddy A P, Krishna P V, Rao R N. Tribological behaviour of Al6061-2SiC-xGr hybrid metal matrix nanocomposites fabricated through ultrasonically assisted stir casting technique. Silicon, 2019, 11(6): 2853–2871

    Article  Google Scholar 

  73. El-Ghazaly A, Anis G, Salem H G. Effect ofgraphene addition on the mechanical and tribological behavior of nanostructured AA2124 self-lubricating metal matrix composite. Composites Part A: Applied Science and Manufacturing, 2017, 95: 325–336

    Article  CAS  Google Scholar 

  74. Tabandeh-Khorshid M, Omrani E, Menezes P L, etal. Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Engineering Science and Technology: An International Journal, 2016, 19(1): 463–469

    Google Scholar 

  75. Zhou W W, Mikulova P, Fan Y C, et al. Interfacial reaction induced efficient load transfer in few-layer graphene reinforced Al matrix composites for high-performance conductor. Composites Part B: Engineering, 2019, 167: 93–99

    Article  CAS  Google Scholar 

  76. Khan M, Din R U, Wadood A, et al. Effect of graphene nanoplatelets on the physical and mechanical properties of Al6061 in fabricated and T6 thermal conditions. Journal of Alloys and Compounds, 2019, 790: 1076–1091

    Article  CAS  Google Scholar 

  77. Chu K, Wang X H, Li Y B, et al. Thermal properties of graphene/metal composites with aligned graphene. Materials & Design, 2018, 140: 85–94

    Article  CAS  Google Scholar 

  78. Wang J, Li J J, Weng G J, et al. The effects of temperature and alignment state of nanofillers on the thermal conductivity of both metal and nonmetal based graphene nanocomposites. Acta Materialia, 2020, 185: 461–473

    Article  CAS  Google Scholar 

  79. Balandin A A. Thermal properties ofgraphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581

    Article  CAS  Google Scholar 

  80. Zhang L, Hou G M, Zhai W, et al. Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles. Journal of Alloys and Compounds, 2018, 748: 854–860

    Article  CAS  Google Scholar 

  81. Tiwari J K, Mandal A, Rudra A, et al. Evaluation of mechanical and thermal properties of bilayer graphene reinforced aluminum matrix composite produced by hot accumulative roll bonding. Journal of Alloys and Compounds, 2019, 801: 49–59

    Article  CAS  Google Scholar 

  82. Chen F, Gupta N, Behera R K, et al. Graphene-reinforced aluminum matrix composites: A review of synthesis methods and properties. JOM, 2018, 70(6): 837–845

    Article  CAS  Google Scholar 

  83. Mei Y, Shao P Z, Sun M, et al. Deformation treatment and microstructure of graphene reinforced metal-matrix nanocomposites: A review of graphene post-dispersion. International Journal of Minerals Metallurgy and Materials, 2020, 27(7): 888–899

    Article  CAS  Google Scholar 

  84. Ju B Y, Yang W S, Shao P Z, et al. Effect of interfacial microstructure on the mechanical properties of GNPs/Al composites. Carbon, 2020, 162: 346–355

    Article  CAS  Google Scholar 

  85. Asgharzadeh H, Sedigh M. Synthesis and mechanical properties of Al matrix composites reinforced with few-layer graphene and graphene oxide. Journal of Alloys and Compounds, 2017, 728: 47–62

    Article  CAS  Google Scholar 

  86. Laha T, Kuchibhatla S, Seal S, et al. Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite. Acta Materialia, 2007, 55(3): 1059–1066

    Article  CAS  Google Scholar 

  87. Guo B S, Chen B, Zhang X M, et al. Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al based composites reinforced by SiC and carbon nanotubes. Carbon, 2018, 135: 224–235

    Article  CAS  Google Scholar 

  88. Banhart F, Kotakoski J, Krasheninnikov AV. Structural defects in graphene. ACS Nano, 2011, 5(1): 26–41

    Article  CAS  Google Scholar 

  89. Chu K, Wang F, Wang X H, et al. Interface design of graphene/copper composites by matrix alloying with titanium. Materials & Design, 2018, 144: 290–303

    Article  CAS  Google Scholar 

  90. Jiang Y Y, Tan Z Q, Fan G L, et al. Nucleation and growth mechanisms of interfacial carbide in graphene nanosheet/Al composites. Carbon, 2020, 161: 17–24

    Article  CAS  Google Scholar 

  91. Tabandeh-Khorshid M, Kumar A, Omrani E, et al. Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites. Composites Part B: Engineering, 2020, 183: 107664

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51774124) and the Natural Science Foundation of Hunan Province (Grant No. 2019JJ40017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Teng, J. Recent progress in graphene-reinforced aluminum matrix composites. Front. Mater. Sci. 15, 79–97 (2021). https://doi.org/10.1007/s11706-021-0541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0541-0

Keywords

Navigation