Skip to main content
Log in

Superior machinability of steel enhanced with BN and MnS particles

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The strategy that replacing part of MnS with BN was proposed in order to decrease the sulfur content in sulfur based free-cutting steel. The effects of BN and MnS inclusions on the microstructure and machinability of the steel were systematically investigated. The results show that most of the BN and MnS inclusions exist individually in the steel and only a small amount of them are in a composite state forming either isolated particles or clusters of particles. In the case of multi-phased steel, the theoretical calculation predicts that the volume of large BN particles should be 0.7 times of the volume of large MnS particles. The machinability of this type of BN and MnS alloy steel over a wide range of cutting speeds ranging from a low speed appropriate for drilling to a high speed appropriate for turning is confirmed as being equal to or superior to that of an MnS reference steel, even though the sulfur content in the composite steel is only half that of the MnS steel. The aptitude for cutting effect of 240 ppm nitrogen and 115 ppm boron in the composite steel is demonstrated to be equivalent or even better than 1000 ppm sulfur in MnS free-cutting steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Yuan and F. Wang, Present research status and prospects on free cutting steel at home and abroad, Res. Iron Steel, 36(2008), No. 5, p. 56.

    Google Scholar 

  2. Y.J. Zhang, C. Zhu, L.F. Wang, H.C. Zhao, M.Y. Chen, Q.L. Wang, Y.C. Jin, and J.T. Han. Development of free cutting steel for machine structure without lead, Mater. Rev., 19(2005), No.12, p. 68.

    Google Scholar 

  3. W.A. Spitzig and R.J. Sober, Influence of sulfide inclusions and pearlite content on the mechanical properties of hot-rolled carbon steels, Metall. Trans. A, 12(1981), No. 2, p. 281.

    Article  Google Scholar 

  4. K. Yamamoto, H. Yamamura, and Y. Suwa, Behavior of non-metallic inclusions in steel during hot deformation and the effects of deformed inclusions on local ductility, ISIJ Int., 51(2011), No. 12, p. 1987.

    Article  Google Scholar 

  5. M. Chen, G. Liu, X.H. Zhang, Z. Shen, and G.J. Yang, Experiment on machinability of new developed low carbon sulphur free-cutting steel, Chin. J. Mech. Eng., 43(2007), No. 9, p. 161.

    Article  Google Scholar 

  6. W.A. Spitzig, Effect of sulfides and sulfide morphology on anisotropy of tensile ductility and toughness of hot-rolled C-Mn steels, Metall. Trans. A, 14(1983), No. 2, p. 471.

    Article  Google Scholar 

  7. R. Quan, Development of cutting steel in Japan, World Metals, 2011-05-24(21).

  8. Y.L. Xiao and M.Z. Tang, Development of BN free cutting steel without lead, World Metals, 2009-11-24(19).

  9. Y.N. Wang, Y.P. Bao, M. Wang, and L.C. Zhang, Precipitation behavior of BN type inclusions in 42CrMo steel, Int. J. Miner. Metall. Mater., 20(2013), No. 1, p. 28.

    Article  Google Scholar 

  10. Y.N. Wang, Y.P. Bao, M. Wang, and L.C. Zhang, Smelting process and machinability of BN-type free cutting steel, J. Univ. Sci. Technol. Beijing, 35(2013), No. 7, p. 869.

    Google Scholar 

  11. Y.N. Wang, Y.P. Bao, M. Wang, and L.C. Zhang, Precipitation and control of BN inclusions in 42CrMo steel and their effect on machinability, Int. J. Miner. Metall. Mater., 20(2013), No. 9, p. 842.

    Article  Google Scholar 

  12. K. Sakuraya, H. Okada, and F. Abe, Influence of heat treatment on formation behavior of boron nitride inclusions in P122 heat resistant steel, ISIJ Int., 46(2006), No. 11, p. 1712.

    Article  Google Scholar 

  13. K. Sakuraya, H. Okada, and F. Abe, BN type inclusions formed in high Cr ferritic heat resistant steel, Energy Mater., 1(2006), No. 3, p. 158.

    Article  Google Scholar 

  14. T. Murakami, T. Shiraga, and Y. Yamane, Development of free cutting steel containing crystallized BN inclusions without lead addition, Mater. Jpn., 45(2006), No. 2, p.144.

    Article  Google Scholar 

  15. R. Tanaka, A. Hosokawa, T. Furumoto, and T. Ueda, Wear characteristics of ceramic tools when turning BN free-machining steel, J. Adv. Mech. Des. Syst. Manuf., 7(2013), No. 3, p. 474.

    Google Scholar 

  16. R. Tanaka, Y. Yamane, K. Sekiya, N. Narutaki, and T. Shirage, Machinability of BN free-machining steel in turning, Int. J. Mach. Tools Manuf., 47(2007), No. 12-13, p. 1971.

    Article  Google Scholar 

  17. R. Tanaka, Y.C. Lin, A. Hosokawa, T. Ueda, and K. Yamada, Influence of additional electrical current on machinability of BN free-machining steel in turning, J. Adv. Mech. Des. Syst., 3(2009), No. 2, p. 171.

    Google Scholar 

  18. Y. Yamane, R. Tanaka, and N. Narutaki, Machinability of BN added steels, J. Jpn. Soc. Precis. Eng., 64(1998), No. 9, p. 1370.

    Article  Google Scholar 

  19. R. Tanaka, Y. Yamane, T. Ueda, A. Hosokawa, and T. Shiraga, Drilling of BN added free-machining steel, J. Jpn. Soc. Abras. Technol., 52(2008), No. 1, p. 28.

    Google Scholar 

  20. R. Tanaka, Y. Yamane, M. Okada, A. Hosoka, and T. Ueda, End milling of free-machining steel for high speed machining, J. Jpn. Soc. Precis. Eng., 73(2007), No. 7, p. 803.

    Article  Google Scholar 

  21. K. Sakuraya and S. Yamamoto, Free-cutting Stainless Steel and Process for Producing the Same, European Patent, EP 2048257A1, 2009.

    Google Scholar 

  22. S. Emura, M. Kawajiri, X.H. Min, S. Yamamoto, K. Sakuraya, and K. Tsuzaki, Machinability improvement and its mechanism in SUS304 austenitic stainless steel by precipitated hexagonal boron nitride, ISIJ Int., 53(2013), No. 10, p. 1841.

    Article  Google Scholar 

  23. S. Emura, M. Kawajiri, X. Min, S. Yamamoto, K. Sakuraya, and K. Tsuzaki, Machinability improvement and its mechanism in SUS304 austenitic stainless steel by h-BN addition, Tetsu-to-Hagane, 98(2012), No. 7, p. 358.

    Article  Google Scholar 

  24. K. Sakuraya, S. Yamamoto, and K. Tsuzaki, Free cutting stainless steel containing h-BN without lead addition, Mater. Jpn., 46(2007), No. 10, p. 689.

    Article  Google Scholar 

  25. S. Emura, S. Yamamoto, K. Sakuraya, and K. Tsuzakl, Free-cutting Stainless-steel Cast Product and Process for Producing Same, European Patent, EP 2537952, 2012.

    Google Scholar 

  26. S. Emura, S. Yamamoto, K. Sakuraya, and K. Tsuzakl, Free-cutting Stainless-steel Material for Precision Processing and Process for Producing Same, European Patent, EP 2565286, 2013.

    Google Scholar 

  27. Y.N. Wang, Y.P. Bao, M. Wang, L.C. Zhang, and Y.N. Chen, Basic research on precipitation and control of BN inclusions in steel, Metall. Mater. Trans. B, 44(2013), No. 5, p. 1144.

    Article  Google Scholar 

  28. R.T. DeHoff, Quantitative Microscopy, McGraw-Hill, New York, 1968, p. 128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ping Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Yn., Bao, Yp., Wang, M. et al. Superior machinability of steel enhanced with BN and MnS particles. Int J Miner Metall Mater 23, 276–282 (2016). https://doi.org/10.1007/s12613-016-1236-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1236-x

Keywords

Navigation