Skip to main content
Log in

Comparative study on the passivation layers of copper sulphide minerals during bioleaching

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite>bornite>pyritic chalcopyrite>covellite>porphyry chalcopyrite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered dissolution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopyrite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide Cu4Fe2S9, respectively. The ability of these passivation layers was found as Cu4Fe2S9>Cu4S11>S8>jarosite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.R. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides: a review, Hydrometallurgy, 84(2006), No.1–2, p.81.

    Article  CAS  Google Scholar 

  2. H.L. Ehrlich, Past, present and future of biohydrometallurgy, Hydrometallurgy, 59(2001), No.2–3, p.127.

    Article  CAS  Google Scholar 

  3. E.M. Arce and I. González, A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulphuric acid solution, Int. J. Miner. Process., 67(2002), No.1–4, p.17.

    Article  CAS  Google Scholar 

  4. K.B. Fu, H. Lin, X.L. Mo, Y.B. Dong, and L. Zhou, Study on bioleaching of different types of chalcopyrite, J. Univ. Sci. Technol. Beijing, 33(2011), No.7, p.806.

    CAS  Google Scholar 

  5. D. Dreisinger, Copper leaching from primary sulfides: options for biological and chemical extraction of copper, Hydrometallurgy, 83(2006), No.1–4, p.10.

    Article  CAS  Google Scholar 

  6. E.M. Córdoba, J.A. Muñoz, M.L. Bláquez, F. González, and A. Ballester, Passivation of chalcopyrite during its chemical leaching with ferric ion at 68°C, Miner. Eng., 22(2009), No.3, p.229.

    Article  Google Scholar 

  7. J.E. Dutrizac, Elemental sulphur formation during the ferric sulphate leaching of chalcopyrite, Can. Metall. Q., 28(1989), No.4, p.337.

    Article  CAS  Google Scholar 

  8. C. Klauber, A. Parker, W. Van Bronswijk, and H. Watling, Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy, Int. J. Miner. Process., 62(2001), No.1–4, p.65.

    Article  CAS  Google Scholar 

  9. D. Bevilaqua, I. Diéz-Perez, C.S. Fugivara, F. Sanz, A.V. Benedetti, and O. Garcia Jr., Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy, Bioelectrochemistry, 64(2004), No.1, p.79.

    Article  CAS  Google Scholar 

  10. A.J. Parker, R.L. Paul, and G.P. Power, Electrochemistry of the oxidative leaching of copper from chalcopyrite, J. Electroanal. Chem., 118(1981), p.305.

    Article  CAS  Google Scholar 

  11. A. Parker, C. Klauber, A. Kougianos, H.R. Watling, and W. Van Bronswijk, An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite, Hydrometallurgy, 71(2003), No.1–2, p.265.

    Article  CAS  Google Scholar 

  12. A. Sandström, A. Shchukarev, and J. Paul, XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential, Miner. Eng., 18(2005), No.5, p.505.

    Article  Google Scholar 

  13. K.A. Third, R. Cord-Ruwisch, and H.R. Watling, Role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching, Hydrometallurgy, 57(2000), No.3, p.225.

    Article  CAS  Google Scholar 

  14. P. Acero, J. Cama, and C. Ayora, Kinetics of chalcopyrite dissolution at pH 3, Eur. J. Mineral., 19(2007), No.2, p.173.

    Article  CAS  Google Scholar 

  15. K.B. Fu, H. Lin, X.L. Mo, Y.B. Dong, and H. Wang, Passivation of different genetic types of chalcopyrite bioleaching, J. Cent. South Univ. Sci. Technol., 42(2011), No.11, p.3245.

    CAS  Google Scholar 

  16. R.P. Hackl, D.B. Dreisinger, E. Peters, and J.A. King, Passivation of chalcopyrite during oxidative leaching in sulfate media, Hydrometallurgy, 39(1995), No.1–3, p.25.

    Article  CAS  Google Scholar 

  17. D.W. Dew, C. Van Buuren, K. Mcewan, and C. Bowker, Bioleaching of base metal sulphide concentrates: A comparison of mesophile and thermopile bacterial cultures, [in] 13th International Biohydrometallurgy Symposium IBS’99, Madrid, 1999, p.229.

  18. F.B. Mateos, I.P. Pérez, and F.C. Mora, The passivation of chalcopyrite subjected to ferric sulphate leaching and its reactivation with metal sulphides, Hydrometallurgy, 19(1987), No.2, p.159.

    Article  Google Scholar 

  19. T. Biegler and M.D. Horne, Electrochemistry of surface oxidation of chalcopyrite, J. Electrochem. Soc., 132(1985), No.6, p.1363.

    Article  CAS  Google Scholar 

  20. J.Y. Liu, X.X. Tao, and P. Cai, Study of formation of jarosite mediated by Thiobacillus ferrooxidans in 9K medium, Procedia Earth. Planet. Sci., 1(2009), No.1, p.706.

    Article  Google Scholar 

  21. J.E. Dutrizac, The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite, Hydrometallurgy, 42(1996), No.3 p.293.

    Article  CAS  Google Scholar 

  22. B. Meyer, Elemental sulfur, Chem. Rev., 76(1976), No.3, p.367.

    Article  CAS  Google Scholar 

  23. C. Klauber, A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution, Int. J. Miner. Process., 86(2008), No.1–4, p.1.

    Article  CAS  Google Scholar 

  24. E.C. Todd, D.M. Sherman, and J.A. Purton, Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2–10) conditions: Cu, Fe L- and O K-edge X-ray spectroscopy, Geochim. Cosmochim. Acta, 67(2003), No.12, p.2137.

    Article  CAS  Google Scholar 

  25. S.W. Goh, A.N. Buckley, R.N. Lamb, R.A. Rosenberg, and D. Moran, The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air, Geochim. Cosmochim. Acta, 70(2006), No.9, p.2210.

    Article  CAS  Google Scholar 

  26. S.L. Harmer, Surface Layer Control for Improved Copper Recovery for Chalcopyrite Leaching [Dissertation], University of South Australia, Adelaide, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Kb., Lin, H., Mo, Xl. et al. Comparative study on the passivation layers of copper sulphide minerals during bioleaching. Int J Miner Metall Mater 19, 886–892 (2012). https://doi.org/10.1007/s12613-012-0643-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0643-x

Keywords

Navigation