Skip to main content
Log in

Comparative Study of Microbial Contact Effect on Complex Copper Sulfide Concentrate Containing Enargite, Covellite and Digenite

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, the contact effects between mesophile bacteria and minerals were observed to enhance the bioleaching kinetics, which demonstrated that the adsorption of bacteria to mineral surfaces could improve the dissolution of arsenic and copper. The microstructure results also demonstrated that after the contact bioleaching, residue surfaces were rougher and with more corrosion bars and pits. Compared to contact oxidation approach, ferric ions, acting as the only oxidants in the non-contact bioleaching process, play a more important role in the copper extraction and arsenic dissolution, which is consistent with the previous works about indirect leaching mechanism. Due to the presence of various mesophiles in the contact oxidation, their activities and corresponding preferences for energy sources influenced by temperature were observed, causing differences in the sulfides’ dissolution: ferrous ions were inclined to be oxidized biologically at 30 °C, whereas sulfide minerals, including enargite, were preferentially oxidized at 45 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu Z L, Hydrometall China 37 (2018) 349. https://doi.org/10.13355/j.cnki.sfyj.2018.05.003

    Article  Google Scholar 

  2. Suyantara W P G, Berdakh D, Miki H, Hirajima T, Sasaki K, Ochi D, and Aoki Y, Int J Min Sci Technol 33 (2023) 703. https://doi.org/10.1016/j.ijmst.2023.01.002

    Article  CAS  Google Scholar 

  3. Yu J, Huang W L, Wang B, Yuan Y, Fang Z, and Cui Y R, Chin J Rare Metals 42 (2018) 1093. https://doi.org/10.1016/j.ijmst.2023.01.002

    Article  CAS  Google Scholar 

  4. Jin K, Central South Univer (2024). https://doi.org/10.27661/d.cnki.gzhnu.2022.003626

    Article  Google Scholar 

  5. Rivera-Vasquez B F, and Dixon D, Hydrometallurgy 152 (2015) 149. https://doi.org/10.1016/j.hydromet.2014.12.012

    Article  CAS  Google Scholar 

  6. Sasaki K, Takatasugi K, Ishikura K, and Hirajima T, Hydrometallurgy 100 (2010) 144. https://doi.org/10.1016/j.hydromet.2009.11.007

    Article  CAS  Google Scholar 

  7. Watling H R, Hydrometallurgy 84 (2006) 81. https://doi.org/10.1016/j.hydromet.2006.05.001

    Article  CAS  Google Scholar 

  8. Wu Z L, Wu Z, and Zhu Y G, Chin J Rare Metals 39 (2015) 735. https://doi.org/10.13373/j.cnki.cjrm.2015.08.010

    Article  CAS  Google Scholar 

  9. Fantauzzi M, Atzei D, Elsener B, Lattanzi P, and Rossi A, Surf Interface Anal 38 (2006) 922. https://doi.org/10.1002/sia.2348

    Article  CAS  Google Scholar 

  10. Fantauzzi M, Rossi G, Elsener B, Loi G, and Rossi A, Anal Bioanal Chem 393 (2009) 1931. https://doi.org/10.1007/s00216-009-2613-3

    Article  CAS  PubMed  Google Scholar 

  11. Wu Z L, Kong W Z, and Zhu Y G, Chin J Rare Metals 39 (2015) 1123. https://doi.org/10.13373/j.cnki.cjrm.2015.12.010

    Article  CAS  Google Scholar 

  12. Corkhill C L, Wincott P L, Lloyd J R, and Vaughan D J, Geochim Cosmochim Acta 72 (2008) 5616. https://doi.org/10.1016/j.gca.2008.09.008

    Article  CAS  Google Scholar 

  13. Escobar B, Huenupi E, Godoy I, and Wiertz J V, Biotechnol Lett 22 (2000) 205. https://doi.org/10.1023/A:1005610226677

    Article  CAS  Google Scholar 

  14. Elkina Y A, Melamud V S, and Bulaev A G, Microbiology 90 (2021) 78. https://doi.org/10.1134/S002626172006003X

    Article  CAS  Google Scholar 

  15. Kong W Z, Wu Z L, and Liu J Y, Nonferrous Metals (Extr Metall) 08 (2014) 14.

    Google Scholar 

  16. Liu J Y, and Xin J J, Metal Mine 501 (2018) 13. https://doi.org/10.19614/j.cnki.jsks.201803003

    Article  Google Scholar 

  17. Sasaki K, Takatsugi K, and Hirajima T, Hydrometallurgy 109 (2011) 153. https://doi.org/10.1016/j.hydromet.2011.06.008

    Article  CAS  Google Scholar 

  18. Takatsugi K, Sasaki K, and Hirajima T, Hydrometallurgy 109 (2011) 90. https://doi.org/10.1016/j.hydromet.2011.05.013

    Article  CAS  Google Scholar 

  19. Lee J, Acar S, Doerr D L, and Brierley J A, Hydrometallurgy 105 (2011) 213. https://doi.org/10.1016/j.hydromet.2010.10.001

    Article  CAS  Google Scholar 

  20. Choudhury S, and Chatterjee A, Arch Microbiol (2022). https://doi.org/10.1007/s00203-022-02874-1

    Article  PubMed  Google Scholar 

  21. Chen Y, Northeast Univer (2022). https://doi.org/10.27007/d.cnki.gdbeu.2018.001248

    Article  Google Scholar 

  22. Sand W, Gerke T, Hallmann R, and Schippers A, Appl Microbiol Biotechnol 43 (1995) 961. https://doi.org/10.1007/BF00166909

    Article  CAS  Google Scholar 

  23. Schippers A, and Sand W, Appl Environ Microb 65 (1999) 319. https://doi.org/10.1128/AEM.65.1.319-321.1999

    Article  CAS  Google Scholar 

  24. Lengke M F, and Tempel R N, Geochimica et Cosmochimica Acta 69 (2005) 341. https://doi.org/10.1016/j.gca.2004.06.032

    Article  CAS  Google Scholar 

  25. Vera M, Schippers A, Hedrich S, and Sand W, Appl Microbiol Biotechnol 106 (2022) 6933. https://doi.org/10.1007/s00253-022-12168-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sand W, Gehrke T, Jozsa P-G, and Schippers A, Hydrometallurgy 59 (2001) 159. https://doi.org/10.1016/S0304-386X(00)00180-8

    Article  CAS  Google Scholar 

  27. Rohwerder T, Gehrke T, Kinzler K, and Sand W, Appl Microbiol Biotechnol 63 (2003) 239. https://doi.org/10.1007/s00253-003-1448-7

    Article  CAS  PubMed  Google Scholar 

  28. Ojumu T V, Petersen J, and Hansford G S, Hydrometallurgy 94 (2008) 69. https://doi.org/10.1016/j.hydromet.2008.05.047

    Article  CAS  Google Scholar 

  29. Wu Z L, Zou L C, Chen J H, Lai X K, and Zhu Y G, Int J Miner Process 149 (2016) 18. https://doi.org/10.1016/j.minpro.2016.01.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51504071, 51474075) and Horizontal Technical Contract—Research on Optimization of Electrowinning Process Technology for Zijinshan Copper Wet Process Plant (No.2023530101000288).

Funding

National Natural Science Foundation of China, 51504071, Buming Chen, 51474075, Buming Chen and Horizontal Technical Contract—Research on Optimization of Electrowinning Process Technology for Zijinshan Copper Wet Process Plant, 2023530101000288, Buming Chen

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Buming Chen, Jun Guo or Zhongcheng Guo.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Chen, B., Guo, J. et al. Comparative Study of Microbial Contact Effect on Complex Copper Sulfide Concentrate Containing Enargite, Covellite and Digenite. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03321-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03321-z

Keywords

Navigation