Skip to main content
Log in

Antibacterial properties and corrosion resistance of AISI 420 stainless steels implanted by silver and copper ions

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Silver or copper ions are often chosen as antibacterial agents. But a few reports are concerned with these two antibacterial agents for preparation of antibacterial stainless steel (SS). The antibacterial properties and corrosion resistance of AISI 420 stainless steel implanted by silver and copper ions were investigated. Due to the cooperative antibacterial effect of silver and copper ions, the Ag/Cu implanted SS showed excellent antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) at a total implantation dose of 2×1017 ions/cm2. Electrochemical polarization curves revealed that the corrosion resistance of Ag/Cu implanted SS was slightly enhanced as compared with that of un-implanted SS. The implanted layer was characterized by X-ray photoelectron spectroscopy (XPS). Core level XPS spectra indicate that the implanted silver and copper ions exist in metallic state in the implanted layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ignatova, D. Labaye, S. Lenoir, D. Strivay, R. Jérôme, and C. Jérôme, Immobilization of silver in polypyrrole/polyanion composite coatings: Preparation, characterization, and antibacterial activity, Langmuir, 19(2003), No.21, p.8971.

    Article  Google Scholar 

  2. L. McLandsborough, A. Rodriguez, D. Pérez-Conesa, and J. Weiss, Biofilms: at the interface between biophysics and microbiology, Food Biophys., 1(2006), No.2, p.94.

    Article  Google Scholar 

  3. M.M. Cowan, K.Z. Abshire, S.L. Houk, and S.M. Evans, Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel, J. Ind. Microbiol. Biotechnol., 30(2003), No.2, p.102.

    Google Scholar 

  4. M.I. Baena, M.C. Márquez, V. Matres, and J. Botella, Bactericidal activity of copper and niobium-alloyed austenitic stainless steel, Curr. Microbiol., 53(2006), No.6, p.491.

    Article  Google Scholar 

  5. A. Caro, V. Humblot, C. Méthivier, M. Minier, M. Salmain, and C.M. Pradier, Grafting of lysozyme and/or poly(ethylene glycol) to prevent biofilm growth on stainless steel surfaces, J. Phys. Chem. B, 113(2009), No.7, p.2101.

    Article  Google Scholar 

  6. M. Ignatova, S. Voccia, B. Gilbert, N. Markova, P.S. Mercuri, M. Galleni, V. Sciannamea, S. Lenoir, D. Cossement, R. Gouttebaron, R. Jérôme, and C. Jérôme, Synthesis of copolymer brushes endowed with adhesion to stainless steel surfaces and antibacterial properties by controlled nitroxide-mediated radical polymerization, Langmuir, 20(2004), No.24, p.10718.

    Article  Google Scholar 

  7. M. Ignatova, S. Voccia, S. Gabriel, B. Gilbert, D. Cossement, R. Jérôme, and C. Jérôme, Stainless steel grafting of hyperbranched polymer brushes with an antibacterial activity: synthesis, characterization, and properties, Langmuir, 25(2009), No.2, p.891.

    Article  Google Scholar 

  8. J. Amalric, P.H. Mutin, G. Guerrero, A. Ponche, A. Sotto, and J.P. Lavigne, Phosphonate monolayers functionalized by silver thiolate species as antibacterial nanocoatings on titanium and stainless steel, J. Mater. Chem., 19(2009), No.1, p.141.

    Article  Google Scholar 

  9. B. Galeano, E. Korff, and W.L. Nicholson, Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation, Appl. Environ. Microbiol., 69(2003), No.7, p.4329.

    Article  Google Scholar 

  10. P. Bahna, T. Dvorak, H. Hanna, A.W. Yasko, R. Hachem, and I. Raad, Orthopaedic metal devices coated with a novel antiseptic dye for the prevention of bacterial infections, Int. J. Antimicrob. Agents, 29(2007), No.5, p.593.

    Article  Google Scholar 

  11. G. Guillemot, B. Despax, P. Raynaud, S. Zanna, P. Marcus, P. Schmitz, and M. Mercier-Bonin, Plasma deposition of silver nanoparticles onto stainless steel for the prevention of fungal biofilms: a case study on Saccharomyces cerevisiae, Plasma Processes Polym., 5(2008), No.3, p.228.

    Article  Google Scholar 

  12. S.N. Jampala, M. Sarmadi, E.B. Somers, A.C.L. Wong, and F.S. Denes, Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces, Langmuir, 24(2008), No.16, p.8583.

    Article  Google Scholar 

  13. Z.G. Dan, H.W. Ni, B.F. Xu, J. Xiong, and P.Y. Xiong. Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions, Thin Solid Films, 492(2005), No.1–2, p.93.

    Article  Google Scholar 

  14. Y.Z. Wan, S. Raman, F. He, and Y. Huang, Surface modification of medical metals by ion implantation of silver and copper, Vacuum, 81(2007), No.9, p.1114.

    Article  Google Scholar 

  15. Q. Zhao, Y. Liu, C. Wang, S. Wang, N. Peng, and C. Jeynes, Reduction of bacterial adhesion on ion-implanted stainless steel surfaces, Med. Eng. Phys., 30(2008), No.3, p.341.

    Article  Google Scholar 

  16. S. Voccia, M. Ignatova, R. Jérôme, and C. Jérôme, Design of antibacterial surfaces by a combination of electrochemistry and controlled radical polymerization, Langmuir, 22(2006), No.20, p.8607.

    Article  Google Scholar 

  17. X. Pang and I. Zhitomirsky, Electrodeposition of hydroxyapatitesilver-chitosan nanocomposite coatings, Surf. Coat. Technol., 202(2008), No.16, p.3815.

    Article  Google Scholar 

  18. S.H. Chen, M.Q. Lu, J.D. Zhang, J.S. Dong, and K. Yang, Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel, Acta Metall. Sin., 40(2004), No.3, p.314.

    Google Scholar 

  19. I.T. Hong and C.H. Koo, Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel, Mater. Sci. Eng. A, 393(2005), No.1–2, p.213.

    Article  Google Scholar 

  20. Y.Q. Liu, L. Nan, D.M. Chen, and K. Yang, Study of a Cu-containing martensitic antibacterial stainless steel, Rare Met. Mater. Eng., 37(2008), No.8, p.1380.

    Google Scholar 

  21. F.S. Teixeira, M.C. Salvadori, M. Cattani, and I.G. Brown, Structural properties of buried conducting layers formed by very low energy ion implantation of gold into polymer, J. Appl. Phys., 106(2009), No.5, art. No.056106.

  22. U. Klueh, V. Wagner, S. Kelly, A. Johnson, and J.D. Bryers, Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation, J. Biomed. Mater. Res., 53(2000), No.6, p.621.

    Article  Google Scholar 

  23. L. Nan, Y.Q. Liu, M.Q. Lu, and K. Yang, Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy, J. Mater. Sci. Mater. Med., 19(2008), No.9, p.3057.

    Article  Google Scholar 

  24. J. Xiong, B.F. Xu, and H.W. Ni, Antibacterial and corrosive properties of copper implanted austenitic stainless steel, Int. J. Miner. Metall. Mater., 16(2009), No.3, p.293.

    Article  Google Scholar 

  25. I. Noda, F. Miyaji, Y. Ando, H. Miyamoto, T. Shimazaki, Y. Yonekura, M. Miyazaki, M. Mawatari, and T. Hotokebuchi, Development of novel thermal sprayed antibacterial coating and evaluation of release properties of silver ions, J. Biomed. Mater. Res. Part B, 89(2009), No.2, p.456.

    Article  Google Scholar 

  26. K.Y. Djoko, Z.G. Xiao, D.L. Huffman, and A.G. Wedd, Conserved mechanism of copper binding and transfer: a comparison of the copper-resistance proteins PcoC from Escherichia coli and CopC from Pseudomonas syringae, Inorg. Chem., 46(2007), No.11, p.4560.

    Article  Google Scholar 

  27. J. Zhao, H.J. Feng, H.Q. Tang, and J.H. Zheng, Bactericidal and corrosive properties of silver implanted TiN thin films coated on AISI317 stainless steel, Surf. Coat. Technol., 201(2007), No.9–11, p.5676.

    Article  Google Scholar 

  28. H.M. Jing, Z.M. Yu, and L. Li, Antibacterial properties and corrosion resistance of Cu and Ag/Cu porous materials, J. Biomed. Mater. Res. A, 87(2008), No.1, p.33.

    Article  Google Scholar 

  29. H.W. Ni, W.T. Zhan, Q. Qiang, and X. Wei, Surface modification of martensitic stainless steel implanted by silver ions, Trans. Mater. Heat Treat., 30(2009), No.1, p.123.

    Google Scholar 

  30. L.H. Tjeng, M.B. Meinders, J. van Elp, J. Ghijsen, G.A. Sawatzky, and R.L. Johnson, Electronic structure of Ag2O, Phys. Rev. B, 41(1990), No.5, p.3190.

    Article  Google Scholar 

  31. G.I.N. Waterhouse, G.A. Bowmaker, and J.B. Metson, Interaction of a polycrystalline silver powder with ozone, Surf. Inerface Anal., 33(2002), No.5, p.401.

    Article  Google Scholar 

  32. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer, Eden Prairie, MN, 1992, p.86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-wei Ni.

Additional information

[This work was financially supported by the National Natural Science Foundation of China (Nos. 50771075 and 51171133) and the Program for New Century Excellent Talents in University of Ministries of the Education of China (No. NECT-07-0650).]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Hw., Zhang, Hs., Chen, Rs. et al. Antibacterial properties and corrosion resistance of AISI 420 stainless steels implanted by silver and copper ions. Int J Miner Metall Mater 19, 322–327 (2012). https://doi.org/10.1007/s12613-012-0558-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0558-6

Keywords

Navigation