Skip to main content
Log in

Comparative study for the association of mitochondrial haplogroup F+ and metabolic syndrome between longevity and control population in Guangxi Zhuang Autonomous Region, China

  • Published:
The journal of nutrition, health & aging

Abstract

Background

Our previous study suggested that mitochondrial haplogroup F (mtDNA F) was a longevity-associated biomarker, but the effect of mitochondrial haplogroup F on longevity individuals with metabolic syndrome (MetS) was not clear. Thus we explored the association between mtDNA F and MetS among longevity and control population in Guangxi Zhuang Autonomous Region, China.

Method

A total of 793 individuals consisting of 307 long-lived participants and 486 local healthy controls were involved in this study. Genotypes of mtDNA F were amplified by polymerase chain reaction and Sanger sequenced. MetS was defined according to the revised National Cholesterol Education Program’s Adult Treatment Panel III (NCEP ATPIII ) criteria.

Results

The prevalence of MetS in longevity group (28.0%) was higher than that (18.5%) in control group (P=0.002). Through the case-control stratify analysis, the prevalence of MetS in mtDNA F+ longevity individuals (29.8%) was 4.6 fold higher than that (5.3%) in local control group (P<0.001). However, after further longevity-only analysis, no association between MetS and mtDNA F+ in longevity group was observed (P=0.167). Following same analysis of two variables in control group, we found that the prevalence of MetS in mtDNA F- (95.8%) was higher than that in mtDNA F+ (5.3%); conversely, the prevalence of non-metabolic syndrome (NMetS) in mtDNA F+ (94.7%) was markedly higher than that in mtDNA F- (4.2%) (P<0.001).

Conclusion

We demonstrated that mtDNA F+, as a molecuar biomarker, might not only confer beneficial effect to resistance against MetS but also function as a positive factor for long-life span among the population in Guangxi Zhuang Autonomous Region, China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Table 2
Figure 1
Table 3
Table 4

Similar content being viewed by others

References

  1. Ren J, Pulakat L, Whaley-Connell A, et al. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl), 2010;88(10):993–1001.

    Article  CAS  Google Scholar 

  2. Rolo AP, Gomes AP, Palmeira CM. Regulation of mitochondrial biogenesis in metabolic syndrome. Current drug targets, 2011;12(6):872–878.

    Article  CAS  PubMed  Google Scholar 

  3. Latorre-Pellicer A, Moreno-Loshuertos R, Lechuga-Vieco AV, et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature, 2016;535(7613):561–565.

    Article  CAS  PubMed  Google Scholar 

  4. Lee HK, Cho YM, Kwak SH, et al. Mitochondrial dysfunction and metabolic syndrome-looking for environmental factors. Biochim Biophys Acta, 2010;1800(3):282–289.

    Article  CAS  PubMed  Google Scholar 

  5. Pravenec M, Hyakukoku M, Houstek J, et al. Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains. Genome Res, 2007;17(9):1319–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Poulton J, Luan J, Macaulay V, et al. Type 2 diabetes is associated with a common mitochondrial variant: evidence from a population-based case-control study. Hum Mol Genet, 2002;11(13):1581–1583.

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka M, Fuku N, Nishigaki Y, et al. Women with mitochondrial haplogroup N9a are protected against metabolic syndrome. Diabetes, 2007;56(2):518–521.

    Article  CAS  PubMed  Google Scholar 

  8. Fuku N, Park KS, Yamada Y, et al. Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians. Am J Hum Genet, 2007;80(3):407–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee HC, Wei YH. Mitochondria and aging. Adv Exp Med Biol, 2012;942:311–327.

    Article  CAS  PubMed  Google Scholar 

  10. He YH, Lu X, Tian JY, et al. Mitochondrial DNA plays an equal role in influencing female and male longevity in centenarians. Exp Gerontol, 2016;83:94–96.

    Article  CAS  PubMed  Google Scholar 

  11. Beach A, Leonov A, Arlia-Ciommo A, et al. Mechanisms by which different functional states of mitochondria define yeast longevity. Int J Mol Sci, 2015;16(3):5528–5554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schiavi A, Ventura N. The interplay between mitochondria and autophagy and its role in the aging process. Exp Gerontol, 2014;56:147–153.

    Article  CAS  PubMed  Google Scholar 

  13. Sanz A. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan? Biochim Biophys Acta, 2016;1857(8):1116–1126.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Hekimi S. Mitochondrial dysfunction and longevity in animals: Untangling the knot. Science, 2015;350(6265):1204–1207.

    Article  CAS  PubMed  Google Scholar 

  15. Sgarbi G, Matarrese P, Pinti M, et al. Mitochondria hyperfusion and elevated autophagic activity are key mechanisms for cellular bioenergetic preservation in centenarians. Aging, 2014;6(4):296–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Leeuwen N, Beekman M, Deelen J, et al. Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study. Age (Dordr), 2014;36(3):9629.

    Article  Google Scholar 

  17. Feng J, Zhang J, Liu M, et al. Association of mtDNA haplogroup F with healthy longevity in the female Chuang population, China. Exp Gerontol, 2011;46(12):987- 993.

    Article  CAS  PubMed  Google Scholar 

  18. Bilal E, Rabadan R, Alexe G, et al. Mitochondrial DNA haplogroup D4a is a marker for extreme longevity in Japan. PloS one 3(6):e2421.

  19. Riera CE, Dillin A. Tipping the metabolic scales towards increased longevity in mammals. Nat Cell Biol, 2015;17(3):196–203.

    Article  PubMed  Google Scholar 

  20. Fadini GP, Ceolotto G, Pagnin E, et al. At the crossroads of longevity and metabolism: the metabolic syndrome and lifespan determinant pathways. Aging cell, 2011;10(1):10–17.

    Article  CAS  PubMed  Google Scholar 

  21. Nunn AV, Bell JD, Guy GW. Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe? Nutr Metab (Lond), 2009;6:16.

    Article  Google Scholar 

  22. Arai Y, Kojima T, Takayama M, et al. The metabolic syndrome, IGF-1, and insulin action. Mol Cell Endocrinol, 2009;299(1):124–128.

    Article  CAS  PubMed  Google Scholar 

  23. Takayama M, Hirose N, Arai Y, et al. Morbidity of Tokyo-area centenarians and its relationship to functional status. J Gerontol A Biol Sci Med Sci, 2007;62(7):774–782.

    Article  PubMed  Google Scholar 

  24. Motta M, Bennati E, Ferlito L, et al. Successful aging in centenarians: myths and reality. Arch Gerontol Geriatr, 2005;40(3):241–251.

    Article  CAS  PubMed  Google Scholar 

  25. He YH, Pu SY, Xiao FH, et al. Improved lipids, diastolic pressure and kidney function are potential contributors to familial longevity: a study on 60 Chinese centenarian families. Sci Rep, 2016;6:21962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barzilai N, Atzmon G, Schechter C, et al. Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA, 2003;290(15):2030–2040.

    Article  CAS  PubMed  Google Scholar 

  27. American Heart Association, National Heart, Lung, and Blood Institue, Grundy SM Grundy SM, et al. Diagnosis and management of the metabolic syndrome. An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Executive summary. Cardiol Rev, 2005;13(6):322–7.

    Google Scholar 

  28. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 2009;120(16):1640–1645.

    Article  CAS  PubMed  Google Scholar 

  29. Takasaki S. Mitochondrial haplogroups associated with Japanese centenarians, Alzheimer’s patients, Parkinson’s patients, type 2 diabetic patients and healthy nonobese young males. J Genet Genomics, 2009;36(7):425–434.

    Article  CAS  PubMed  Google Scholar 

  30. Ji Y, Zhang AM, Jia X, et al. Mitochondrial DNA haplogroups M7b1’2 and M8a affect clinical expression of leber hereditary optic neuropathy in Chinese families with the m.11778G—>a mutation. Am J Hum Genet, 2008;83(6):760–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tharaphan P, Chuenkongkaew WL, Luangtrakool K, et al. Mitochondrial DNA haplogroup distribution in pedigrees of Southeast Asian G11778A Leber hereditary optic neuropathy. J Neuroophthalmol, 2006;26(4):264–267.

    Article  PubMed  Google Scholar 

  32. Wu CC, Chiu YH, Chen PJ, et al. Prevalence and clinical features of the mitochondrial m.1555A>G mutation in Taiwanese patients with idiopathic sensorineural hearing loss and association of haplogroup F with low penetrance in three families. Ear Hear, 2007;28(3):332–342.

    Article  PubMed  Google Scholar 

  33. Liu M, Wang J, Jiang B, et al. Increasing Prevalence of Metabolic Syndrome in a Chinese Elderly Population: 2001-2010. PloS one, 2013;8(6):e66233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., He, X., Li, X. et al. Comparative study for the association of mitochondrial haplogroup F+ and metabolic syndrome between longevity and control population in Guangxi Zhuang Autonomous Region, China. J Nutr Health Aging 22, 302–307 (2018). https://doi.org/10.1007/s12603-017-0915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-017-0915-2

Key words

Navigation