Skip to main content
Log in

Effects of running wheel activity and dietary HMB and B—alanine co-supplementation on muscle quality in aged male rats

  • Published:
The journal of nutrition, health & aging

Abstract

Objective

Loss of skeletal muscle function is linked to increased risk for loss of health and independence in older adults. Dietary interventions that can enhance aging muscle function, alone or in combination with exercise, may offer an effective way to reduce these risks. The goal of this study was to evaluate the muscular effects of beta-hydroxy-beta-methylbutyrate (HMB) and beta-alanine (β-Ala) co-supplementation in aged Sprague-Dawley rats with voluntary access to running wheels (RW).

Methods

Aged (20 months) rats were housed with ad libitum access to RW while on a purified diet for 4 weeks, then balanced for RW activity and assigned to either a control or an experimental diet (control + HMB and β-Ala) for the next 4 weeks (n = 10/group). At the end of the study, we assessed muscle size, in situ force and fatigability in the medial gastrocnemius muscles, as well as an array of protein markers related to various age- and activity-responsive signaling pathways.

Results

Dietary HMB+β-Ala did not improve muscle force or fatigue resistance, but a trend for increased muscle cross-sectional area (CSA) was observed (P = 0.077). As a result, rats on the experimental diet exhibited reduced muscle quality (force/CSA; P = 0.032). Dietary HMB+β-Ala reduced both the abundance of PGC1-α (P = 0.050) and the ratio of the lipidated to non-lipidated forms of microtubule-associated protein 1 light chain 3 beta (P = 0.004), markers of mitochondrial biogenesis and autophagy, respectively. Some alterations in myostatin signaling also occurred in the dietary HMB+β-Ala group. There was an unexpected difference (P = 0.046) in RW activity, which increased throughout the study in the animals on the control diet, but not in animals on the experimental diet.

Conclusions

These data suggest that the short-term addition of dietary HMB+β-Ala to modest physical activity provided little enhancement of muscle function in this model of uncomplicated aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ferrara CM, Goldberg AP, Ortmeyer HK, Ryan AS. Effects of aerobic and resistive exercise training on glucose disposal and skeletal muscle metabolism in older men. J Gerontol A Biol Sci Med Sci. 2006;61(5):480–7.

    Article  PubMed  Google Scholar 

  2. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35. doi:10.1001/jama.2009.681.

    Article  CAS  PubMed  Google Scholar 

  3. Samitz G, Egger M, Zwahlen M. Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. International journal of epidemiology. 2011;40(5):1382–400. doi:10.1093/ije/dyr112.

    Article  PubMed  Google Scholar 

  4. Laaksonen DE, Lindstrom J, Lakka TA, Eriksson JG, Niskanen L, Wikstrom K et al. Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study. Diabetes. 2005;54(1):158–65.

    Article  CAS  PubMed  Google Scholar 

  5. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22. doi:10.1073/pnas.1015950108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kulmala J, Solomon A, Kareholt I, Ngandu T, Rantanen T, Laatikainen T et al. Association between mid-to late life physical fitness and dementia: evidence from the CAIDE study. J Intern Med. 2014;276(3):296–307. doi:10.1111/joim.12202.

    Article  CAS  PubMed  Google Scholar 

  7. Manini TM, Visser M, Won-Park S, Patel KV, Strotmeyer ES, Chen H et al. Knee extension strength cutpoints for maintaining mobility. J Am Geriatr Soc. 2007;55(3):451–7.

    Article  PubMed  Google Scholar 

  8. Metter EJ, Talbot LA, Schrager M, Conwit R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci. 2002;57(10):B359–65.

    Article  PubMed  Google Scholar 

  9. Louie GH, Ward MM. Association of measured physical performance and demographic and health characteristics with self-reported physical function: implications for the interpretation of self-reported limitations. Health Qual Life Outcomes. 2010;8:84. doi:10.1186/1477-7525-8-84.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol. 2003;95(4):1717–27.

    Article  CAS  PubMed  Google Scholar 

  11. Bickel CS, Cross JM, Bamman MM. Exercise dosing to retain resistance training adaptations in young and older adults. Med Sci Sports Exerc. 2011;43(7):1177–87. doi:10.1249/MSS.0b013e318207c15d.

    Article  PubMed  Google Scholar 

  12. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90(6):1579–85. doi:ajcn.2009.28047 [pii] 10.3945/ajcn.2009.28047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Personius KE, Jayaram A, Krull D, Brown R, Xu T, Han B et al. Grip force, EDL contractile properties, and voluntary wheel running after postdevelopmental myostatin depletion in mice. J Appl Physiol. 2010;109(3):886–94. doi:japplphysiol.00300.2010 [pii] 10.1152/japplphysiol.00300.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fry CS, Rasmussen BB. Skeletal muscle protein balance and metabolism in the elderly. Curr Aging Sci. 2011;4(3):260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martel GF, Roth SM, Ivey FM, Lemmer JT, Tracy BL, Hurlbut DE et al. Age and sex affect human muscle fibre adaptations to heavy-resistance strength training. Exp Physiol. 2006;91(2):457–64.

    Article  PubMed  Google Scholar 

  16. Raue U, Slivka D, Minchev K, Trappe S. Improvements in whole muscle and myocellular function are limited with high-intensity resistance training in octogenarian women. J Appl Physiol. 2009;106(5):1611–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43(6):748–59. doi:10.1093/ageing/afu115.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–64. doi:10.3945/ajcn.112.037556.

    Article  CAS  PubMed  Google Scholar 

  19. Konopka AR, Douglass MD, Kaminsky LA, Jemiolo B, Trappe TA, Trappe S et al. Molecular adaptations to aerobic exercise training in skeletal muscle of older women. J Gerontol A Biol Sci Med Sci. 2010;65(11):1201–7. doi:10.1093/gerona/glq109.

    Article  PubMed  Google Scholar 

  20. Harber MP, Konopka AR, Undem MK, Hinkley JM, Minchev K, Kaminsky LA et al. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men. Journal of applied physiology. 2012;113(9):1495–504. doi:10.1152/japplphysiol.00786.2012.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Buchner DM, Cress ME, de Lateur BJ, Esselman PC, Margherita AJ, Price R et al. A comparison of the effects of three types of endurance training on balance and other fall risk factors in older adults. Aging (Milano). 1997;9(1–2):112–9.

    CAS  PubMed  Google Scholar 

  22. Szczesniak KA, Ostaszewski P, Fuller JC, Jr., Ciecierska A, Sadkowski T. Dietary supplementation of beta-hydroxy-beta-methylbutyrate in animals-a review. Journal of animal physiology and animal nutrition. 2014;99(3):405–17. doi:10.1111/jpn.12234.

    Article  PubMed  Google Scholar 

  23. Flakoll P, Sharp R, Baier S, Levenhagen D, Carr C, Nissen S. Effect of betahydroxy-beta-methylbutyrate, arginine, and lysine supplementation on strength, functionality, body composition, and protein metabolism in elderly women. Nutrition. 2004;20(5):445–51. doi:10.1016/j.nut.2004.01.009 S0899900704000103 [pii].

    Article  CAS  PubMed  Google Scholar 

  24. Fuller JC, Jr., Baier S, Flakoll P, Nissen SL, Abumrad NN, Rathmacher JA. Vitamin D status affects strength gains in older adults supplemented with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and lysine: a cohort study. JPEN J Parenter Enteral Nutr. 2011;35(6):757–62. doi:10.1177/0148607111413903.

    Article  CAS  PubMed  Google Scholar 

  25. Stout JR, Smith-Ryan AE, Fukuda DH, Kendall KL, Moon JR, Hoffman JR et al. Effect of calcium beta-hydroxy-beta-methylbutyrate (CaHMB) with and without resistance training in men and women 65+yrs: a randomized, double-blind pilot trial. Exp Gerontol. 2013;48(11):1303–10. doi:10.1016/j.exger.2013.08.007.

    Article  CAS  PubMed  Google Scholar 

  26. Wilson JM, Grant SC, Lee SR, Masad IS, Park YM, Henning PC et al. Beta-hydroxybeta-methyl-butyrate blunts negative age-related changes in body composition, functionality and myofiber dimensions in rats. Journal of the International Society of Sports Nutrition. 2012;9(1):18. doi:10.1186/1550-2783-9-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alway SE, Pereira SL, Edens NK, Hao Y, Bennett BT. beta-Hydroxy-betamethylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy. Exp Gerontol. 2013;48(9):973–84. doi:10.1016/j.exger.2013.06.005.

    Article  CAS  PubMed  Google Scholar 

  28. National_Institute_on_Aging. Unexplained Fatigue in the Elderly. Washington, D.C. 2007. http://www.nia.nih.gov/about/events/2011/unexplained-fatigue-elderly. Accessed May, 13 2015.

    Google Scholar 

  29. Christie A, Snook EM, Kent-Braun JA. Systematic Review and Meta-Analysis of Skeletal Muscle Fatigue in Old Age. Med Sci Sports Exerc. 2010;43(4):568–77. doi:10.1249/MSS.0b013e3181f9b1c4.

    Article  Google Scholar 

  30. Flueck M, Eilers W. Training modalities: impact on endurance capacity. Endocrinology and metabolism clinics of North America. 2010;39(1):183–200, xi. doi:10.1016/j.ecl.2009.10.002.

    Article  CAS  PubMed  Google Scholar 

  31. Proper KI, Koning M, van der Beek AJ, Hildebrandt VH, Bosscher RJ, van Mechelen W. The effectiveness of worksite physical activity programs on physical activity, physical fitness, and health. Clin J Sport Med. 2003;13(2):106–17.

    Article  PubMed  Google Scholar 

  32. Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. 2010;39(2):321–33. doi:10.1007/s00726-009-0443-4.

    Article  CAS  PubMed  Google Scholar 

  33. del Favero S, Roschel H, Solis MY, Hayashi AP, Artioli GG, Otaduy MC et al. Beta-alanine (Carnosyn) supplementation in elderly subjects (60-80 years): effects on muscle carnosine content and physical capacity. Amino Acids. 2012;43(1):49–56. doi:10.1007/s00726-011-1190-x.

    Article  CAS  PubMed  Google Scholar 

  34. Glenn JM, Gray M, Stewart R, Moyen NE, Kavouras SA, DiBrezzo R et al. Incremental effects of 28 days of beta-alanine supplementation on high-intensity cycling performance and blood lactate in masters female cyclists. Amino Acids. 2015. doi:10.1007/s00726-015-2050-x.

    Google Scholar 

  35. Everaert I, Stegen S, Vanheel B, Taes Y, Derave W. Effect of beta-alanine and carnosine supplementation on muscle contractility in mice. Med Sci Sports Exerc. 2013;45(1):43–51. doi:10.1249/MSS.0b013e31826cdb68.

    Article  CAS  PubMed  Google Scholar 

  36. Bhattacharya TK, Pence BD, Ossyra JM, Gibbons TE, Perez S, McCusker RH et al. Exercise but not (-)-epigallocatechin-3-gallate or beta-alanine enhances physical fitness, brain plasticity, and behavioral performance in mice. Physiology & behavior. 2015;145:29–37. doi:10.1016/j.physbeh.2015.03.023.

    Article  CAS  Google Scholar 

  37. Pinheiro CH, Gerlinger-Romero F, Guimaraes-Ferreira L, de Souza-Jr AL, Vitzel KF, Nachbar RT et al. Metabolic and functional effects of beta-hydroxy-betamethylbutyrate (HMB) supplementation in skeletal muscle. Eur J Appl Physiol. 2012;112(7):2531–7. doi:10.1007/s00421-011-2224-5.

    Article  CAS  PubMed  Google Scholar 

  38. Garvey SM, Russ DW, Skelding MB, Dugle JE, Edens NK. Molecular and metabolomic effects of voluntary running wheel activity on skeletal muscle in late middle-aged rats. Physiological reports 2015 doi:10.14814/phy2.12319.

    Google Scholar 

  39. Russ DW, Krause J, Wills A, Arreguin R. «SR stress» in mixed hindlimb muscles of aging male rats. Biogerontology. 2012;13(5):547–55. doi:10.1007/s10522-012-9399-y.

    Article  CAS  PubMed  Google Scholar 

  40. Russ DW, Acksel C, Boyd IM, Maynard J, McCorkle KW, Edens NK et al. Dietary HMB and beta-alanine co-supplementation does not improve in situ muscle function in sedentary, aged male rats. Appl Physiol Nutr Metab. 2015;40(12):1294–301. doi:10.1139/apnm-2015-0391.

    Article  CAS  PubMed  Google Scholar 

  41. Burke RE, Levine DN, Tsairis P, Zajac FE, 3rd. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol. 1973;234(3):723–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Russ DW, Vandenborne K, Binder-Macleod SA. Factors in fatigue during intermittent electrical stimulation of human skeletal muscle. J Appl Physiol. 2002;93(2):469–78.

    Article  PubMed  Google Scholar 

  43. Russ DW, Wills AM, Boyd IM, Krause J. Weakness, SR function and stress in gastrocnemius muscles of aged male rats. Exp Gerontol. 2014;50:40–4. doi:10.1016/j. exger.2013.11.018.

    Article  CAS  PubMed  Google Scholar 

  44. Thomson DM, Gordon SE. Impaired overload-induced muscle growth is associated with diminished translational signalling in aged rat fast-twitch skeletal muscle. J Physiol. 2006;574(Pt 1):291–305. doi:jphysiol.2006.107490 [pii] 10.1113/jphysiol.2006.107490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kubli DA, Quinsay MN, Gustafsson AB. Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes. Communicative & integrative biology. 2013;6(4):e24511. doi:10.4161/cib.24511.

    Article  Google Scholar 

  46. Libera LD, Zennaro R, Sandri M, Ambrosio GB, Vescovo G. Apoptosis and atrophy in rat slow skeletal muscles in chronic heart failure. Am J Physiol. 1999;277(5 Pt 1):C982–6.

    CAS  PubMed  Google Scholar 

  47. Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 2001;535(Pt 1):301–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wall BT, Cermak NM, van Loon LJ. Dietary protein considerations to support active aging. Sports Med. 2014;44 Suppl 2:S185–94. doi:10.1007/s40279-014-0258-7.

    Article  PubMed  Google Scholar 

  49. Breen L, Phillips SM. Interactions between exercise and nutrition to prevent muscle waste during ageing. Br J Clin Pharmacol. 2013;75(3):708–15. doi:10.1111/j.1365-2125.2012.04456.x.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Weisgarber KD, Candow DG, Farthing JP. Whey protein and high-volume resistance training in postmenopausal women. J Nutr Health Aging. 2015;19(5):511–7. doi:10.1007/s12603-015-0454-7.

    Article  CAS  PubMed  Google Scholar 

  51. Caruso J, Charles J, Unruh K, Giebel R, Learmonth L, Potter W. Ergogenic effects of beta-alanine and carnosine: proposed future research to quantify their efficacy. Nutrients. 2012;4(7):585–601. doi:10.3390/nu4070585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ruegsegger GN, Toedebusch RG, Will MJ, Booth FW. Mu opioid receptor modulation in the nucleus accumbens lowers voluntary wheel running in rats bred for high running motivation. Neuropharmacology. 2015;97:171–81. doi:10.1016/j. neuropharm.2015.05.022.

    Article  CAS  PubMed  Google Scholar 

  53. Yoshimura Y, Uchida K, Jeong S, Yamaga M. Effects of Nutritional Supplements on Muscle Mass and Activities of Daily Living in Elderly Rehabilitation Patients with Decreased Muscle Mass: A Randomized Controlled Trial. J Nutr Health Aging. 2016;20(2):185–91. doi:10.1007/s12603-015-0570-4.

    Article  CAS  PubMed  Google Scholar 

  54. Deutz NE, Pereira SL, Hays NP, Oliver JS, Edens NK, Evans CM et al. Effect of beta-hydroxy-beta-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin Nutr. 2013;32(5):704–12. doi:10.1016/j.clnu.2013.02.011.

    Article  CAS  PubMed  Google Scholar 

  55. Bell KE, von Allmen MT, Devries MC, Phillips SM. Muscle Disuse as a Pivotal Problem in Sarcopenia-related Muscle Loss and Dysfunction. The Journal of frailty & aging. 2016;5(1):33–41. doi:10.14283/jfa.2016.78.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Russ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russ, D.W., Acksel, C., McCorkle, K.W. et al. Effects of running wheel activity and dietary HMB and B—alanine co-supplementation on muscle quality in aged male rats. J Nutr Health Aging 21, 554–561 (2017). https://doi.org/10.1007/s12603-016-0810-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-016-0810-2

Key words

Navigation