Skip to main content
Log in

Long-term intermittent glutamine supplementation repairs intestinal damage (structure and functional mass) with advanced age: Assessment with plasma citrulline in a rodent model

  • Published:
The journal of nutrition, health & aging

Abstract

Objective

Glutamine is the preferred fuel for the rat small intestine and promotes the growth of intestinal mucosa, especially in the event of gut injury. Quantitatively, glutamine is one important precursor for intestinal citrulline release. The aim of this study was to determine whether the effect of glutamine on the increase in intestinal villus height is correlated with an increase in both gut mass and citrulline plasma level in very old rats.

Methods

We intermittently supplemented very old (27-mo) female rats with oral glutamine (20% of diet protein). Intestinal histomorphometric analysis of the small bowel was performed. Amino acids, in particular citrulline, were measured in the plasma, liver and jejunum. Markers of renal (creatinine, urea) and liver (alanine aminotransferase [ALT]) and aspartate aminotransferase (AST) functions were measured to evaluate renal and liver functions in relation to aging and to glutamine supplementation. Liver glutathione was also determined to evaluate cellular redox state.

Results

Glutamine supplementation maintains the body weight of very old rats, not by limiting sarcopenia but rather by increasing the organ mass of the splanchnic area. Total intestine mass was significantly higher in glutamine-supplemented rats than in controls (15%). Measurement of villus height and crypt depth demonstrated that the difference between villus and crypt was significantly improved in glutamine pre-treated rats compared to controls (∼ 11%). Plasma citrulline also increased by 15% in glutamine-supplemented rats compared to controls.

Conclusion

Citrulline appears as a biomarker of enterocyte mass in villous atrophy associated with advanced age. Non-invasive measurement of this metabolite may be useful in following the state of the gastrointestinal tract in very old people, whose numbers are increasing worldwide and the care of whom is a major public health issue. The gut may contribute to the malnutrition caused by malabsorption frequently observed in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hohn P, Gabbert H, Wagner R. Differentiation and aging of the rat intestinal mucosa. II. Morphological, enzyme histochemical and disc electrophoretic aspects of the aging of the small intestinal mucosa. Mech Ageing Dev 1978;7:217–226.

    Article  CAS  PubMed  Google Scholar 

  2. Drozdowski L, Thomson AB. Aging and the intestine. World J Gastroenterol 2006;12:7578–7584.

    PubMed Central  PubMed  Google Scholar 

  3. Atillasoy E, Holt PR. Gastrointestinal proliferation and aging. J Geront 1993;48:B43–B49.

    Article  CAS  PubMed  Google Scholar 

  4. Majumdar AP, Du J, Yu Y, et al. Cell cycle and apoptosis regulatory protein-1: a novel regulator of apoptosis in the colonic mucosa during aging. Am J Physiol Gastrointest Liver Physiol 2007;293:G1215–G1222.

    Article  CAS  PubMed  Google Scholar 

  5. Patel BB, Yu Y, Du J, et al. Schlafen 3, a novel gene, regulates colonic mucosal growth during aging. Am J Physiol Gastrointest Liver Physiol 2009;296:G955–G962.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gudkov AV, Komarova EA. Pathologies Associated with the p53 Response. Cold Spring Harb Perspect Biol 2010;3:1–26.

    Google Scholar 

  7. Coeffier M, Claeyssens S, Hecketsweiler B, et al. Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa. Am J Physiol Gastrointest Liver Physiol 2003;285:G266–G273.

    CAS  PubMed  Google Scholar 

  8. Windmueller HG, Spaeth AE. Source and fate of circulating citrulline. Am J Physiol 1981;241:E473–E480

    CAS  PubMed  Google Scholar 

  9. Souba WW. Glutamine: a key substrate for the splanchnic bed. Annu Rev Nutr 1991;11:285–308.

    Article  CAS  PubMed  Google Scholar 

  10. Van de Poll MC, Ligthart-Melis GC, Boelens PG, et al. Intestinal and hepatic metabolism of glutamine and citrulline in humans. J Physiol 2007;581:819–827.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Ban K, Kozar RA. Glutamine protects against apoptosis via downregulation of Sp3 in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2010;299:G1344–G1353.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Sakiyama T, Musch MW, Ropeleski MJ, et al. Glutamine increases autophagy under Basal and stressed conditions in intestinal epithelial cells. Gastroenterology 2009;136:924–932.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Larson SD, Li J, Chung DH, et al. Molecular mechanisms contributing to glutamine-mediated intestinal cell survival. Am J Physiol Gastrointest Liver Physiol 2007;293:G1262–G1271.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Brasse-Lagnel C, Lavoinne A, Husson A. Control of mammalian gene expression by amino acids, especially glutamine. FEBS J 2009;276:1826–1844.

    Article  CAS  PubMed  Google Scholar 

  15. Amasheh M, Andres S, Amasheh S, et al. Barrier effects of nutritional factors. Ann N Y Acad Sci 2009;1165:267–273.

    Article  CAS  PubMed  Google Scholar 

  16. Lesueur C, Bole-Feysot C, Bekri S, et al. Glutamine induces nuclear degradation of the NF-kappaB p65 subunit in Caco-2/TC7 cells. Biochimie 2012;94:806–815.

    Article  CAS  PubMed  Google Scholar 

  17. Crenn P, Hanachi M, Neveux N, et al. [Circulating citrulline levels: a biomarker for intestinal functionality assessment]. Ann Biol Clin (Paris) 2011;69:513–521.

    CAS  Google Scholar 

  18. Curis E, Crenn P, Cynober L. Citrulline and the gut. Curr Opin Clin Nutr Metab Care 2007;10:620–626.

    Article  CAS  PubMed  Google Scholar 

  19. Fujita T, Yanaga K. Association between glutamine extraction and release of citrulline and glycine by the human small intestine. Life Sciences 2007;80:1846–1850.

    Article  CAS  PubMed  Google Scholar 

  20. Van De Poll MCG, Siroen MPC, Van Leeuwen PAM, et al. Interorgan amino acid exchange in humans: consequences for arginine and citrulline metabolism. Am J Clin Nutr 2007;85:167–172.

    PubMed  Google Scholar 

  21. Marini JC, Didelija IC, Castillo L, et al. Glutamine: precursor or nitrogen donor for citrulline synthesis? Am J Physiol Endocrinol Metab 2010;299:E69–E79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Rutten EP, Engelen MP, Wouters EF, et al. Metabolic effects of glutamine and glutamate ingestion in healthy subjects and in persons with Chronic obstructive pulmonary disease. Am J Clin Nutr 2006;83:115–123.

    CAS  PubMed  Google Scholar 

  23. Crenn P, Messing B, Cynober L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr 2008;27:328–339.

    Article  CAS  PubMed  Google Scholar 

  24. Deutz NEP. The 2007 ESPEN Sir David Cuthbertson Lecture: amino acids between and within organs. The glutamate-glutamine-citrulline-arginine pathway. Clin Nutr 2008;27:321–327.

    Article  CAS  PubMed  Google Scholar 

  25. Mignon M, Beaufrere AM, Combaret L, et al. Does long-term intermittent treatment with glutamine improve the well-being of fed and fasted very old rats? JPEN 2007;31:456–462.

    Article  CAS  Google Scholar 

  26. Fitzgibbons S, Ching YA, Valim C, et al. Relationship between serum citrulline levels and progression to parenteral nutrition independence in children with short bowel syndrome. J Pediatr Surg 2009;44:928–932.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Peters JH, Beishuizen A, Keur MB, et al. Assessment of small bowel function in critical illness: potential role of citrulline metabolism. J Intensive Care Med 2011;26:105–110.

    Article  CAS  PubMed  Google Scholar 

  28. Piton G, Manzon C, Cypriani B, et al. Acute intestinal failure in critically ill patients: is plasma citrulline the right marker? Intensive Care Med 2011;37:911–917.

    Article  PubMed  Google Scholar 

  29. Walrand S, Short KR, Bigelow ML, et al. Functional impact of high protein intake on healthy elderly people. Am J Physiol Endocrinol Metab 2008;295:E921–E928.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Rajan D, Wu R, Shah KG, et al. Human ghrelin protects animals from renal ischemia-reperfusion injury through the vagus nerve. Surgery 2012;151:37–47.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Meynial-Denis D, Bielicki G., Beaufrere AM, et al. Glutamate and C02 production from glutamine in incubated enterocytes of adult and very old rats. J Nutr Biochem 2012;24:688–692.

    Article  PubMed  Google Scholar 

  32. Neveux N, David P, Cynober L. Measurement of amino acid concentrations in biological fluids and tissues using ion exchange chromatography. Metabolic and therapeutic aspects of amino acids in clinical nutrition CRC Press, Boca 2004;17–28.

    Google Scholar 

  33. Mosoni L, Balage M, Vazeille E, et al. Antioxidant supplementation had positive effects in old rat muscle, but through better oxidative status in other organs. Nutrition 2010;26:1157–1162.

    Article  CAS  PubMed  Google Scholar 

  34. Moningka NC, Sindler AL, Muller-Delp JM, et al. Twelve weeks of treadmill exercise does not alter age-dependent chronic kidney disease in the Fisher 344 male rat. J Physiol 2011;589:6129–6138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Gagliano N, Arosio B, Grizzi F, et al. Acute liver CC1(4) intoxication causes low HSP70 gene expression and a delayed transition through the cell cycle in aged rats. Exp Gerontol 2002;37:791–801.

    Article  CAS  PubMed  Google Scholar 

  36. Pinel C, Coxam V, Mignon M, et al. Alterations in glutamine synthetase activity in rat skeletal muscle are associated with advanced age. Nutrion 2006;22:778–785.

    Article  CAS  Google Scholar 

  37. Watford M. Glutamine metabolism and function in relation to proline synthesis and the safety of glutamine and proline supplementation. J Nutr 2008;138:2003S–2007S.

    CAS  PubMed  Google Scholar 

  38. Thomson AB. Small intestinal disorders in the elderly. Best Pract Res Clin Gastroenterol. 2009;23:861–874.

    Article  PubMed  Google Scholar 

  39. Moinard C, Cynober L. Citrulline: a new player in the control of nitrogen homeostasis. J Nutr 2007;137:1621S–1625S.

    CAS  PubMed  Google Scholar 

  40. Roth, E., Oehler, R., Manhart, N. et al. Regulative potential of glutamine — Relation to glutathione metabolism. J Nutr 2002;18:217–221.

    Article  CAS  Google Scholar 

  41. Curi R, Lagranha C.J., DOI S.Q. et al. Molecular mechanisms of glutamine action. J. Cell. Phys. 2005;204:392–401.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Meynial-Denis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaufrere, A.M., Neveux, N., Patureau Mirand, P. et al. Long-term intermittent glutamine supplementation repairs intestinal damage (structure and functional mass) with advanced age: Assessment with plasma citrulline in a rodent model. J Nutr Health Aging 18, 814–819 (2014). https://doi.org/10.1007/s12603-014-0554-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-014-0554-9

Key words

Navigation