Skip to main content
Log in

Cognitive impairment, genomic instability and trace elements

  • Published:
The journal of nutrition, health & aging

Abstract

Cognitive impairments are often related to aging and micronutrient deficiencies. Various essential micronutrients in the diet are involved in age-altered biological functions such as, zinc, copper, iron, and selenium that play pivotal roles either in maintaining and reinforcing the antioxidant performances or in affecting the complex network of genes (nutrigenomic approach) involved in encoding proteins for biological functions. Genomic stability is one of the leading causes of cognitive decline and deficiencies or excess in trace elements are two of the factors relating to it. In this review, we report and discuss the role of micronutrients in cognitive impairment in relation to genomic stability in an aging population. Telomere integrity will also be discussed in relation to aging and cognitive impairment, as well as, the micronutrients related to these events. This review will provide an understanding on how these three aspects can relate with each other and why it is important to keep a homeostasis of micronutrients in relation to healthy aging. Micronutrient deficiencies and aging process can lead to genomic instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

SOD:

superoxide dismutase

GSH:

Glutathione

MDA:

malondialdehyde

RBC:

red blood cell

MCI:

mild cognitive impairment

AD:

Alzheimer disease

MMSE:

mini mental state examination

GDS:

Geriatric Depression Scale

PPS:

Perceived Stress Scale

FFQ:

Frequency Food Questionnaire

EAAS:

Electrothermal atomic absorption spectrometry

AAS:

Atomic Absorption Spectrophotometer

ADAS-cog:

Alzheimer’s Disease Assessment Scale

Pb:

Plumbum

Ca:

Calcium

References

  1. Venne R. Mainstreaming the concerns of older persons into the social development agenda. United Nations Secretariat Division for Social Policy and Development, 2005.

    Google Scholar 

  2. Swerdlow RH. The neurodegenerative mitochondriopathies. J Alzheimers Dis 2009;17 (4):737–751.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Petrozzi L, Lucetti C, Scarpato R, Gambaccini G, Trippi F, Bernardini S, Del Dotto P, Migliore L, Bonuccelli U. Cytogenetic alterations in lymphocytes of Alzheimer’s disease and Parkinson’s disease patients. Neurol Sci 2002;23 (2):s97–s98. doi:10.1007/s100720200087

    Article  PubMed  Google Scholar 

  4. Trippi F, Botto N, Scarpato R, Petrozzi L, Bonuccelli U, Latorraca S, Sorbi S, Migliore L. Spontaneous and induced chromosome damage in somatic cells of sporadic and familial Alzheimer’s disease patients. Mutagenesis 2001;16 (4):323–327. doi:10.1093/mutage/16.4.323

    Article  CAS  PubMed  Google Scholar 

  5. Fenech MF. Dietary reference values of individual micronutrients and nutriomes for genome damage prevention: current status and a road map to the future. The American Journal of Clinical Nutrition 2010;91 (5):1438S–1454S. doi:10.3945/ajcn.2010.28674D

    Article  CAS  PubMed  Google Scholar 

  6. Deary IJ, Corley J, Gow AJ, Harris SE, Houlihan LM, Marioni RE, Penke L, Rafnsson SB, Starr JM. Age-associated cognitive decline. British Medical Bulletin 2009;92 (1):135–152. doi:10.1093/bmb/ldp033

    Article  PubMed  Google Scholar 

  7. Hedden T, Gabrieli JD. Insights into the ageing mind: a view from cognitive neuroscience. Nature reviews Neuroscience 2004;5 (2):87–9.

    Article  CAS  PubMed  Google Scholar 

  8. Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annual review of psychology 2009;60:173–19.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Raz N, Rodrigue KM. Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience & Biobehavioral Reviews 2006;30 (6):730–748.

    Article  Google Scholar 

  10. Chan R, Chan D, Woo J. A cross sectional study to examine the association between dietary patterns and cognitive impairment in older Chinese people in Hong Kong. The Journal Of Nutrition, Health & Aging 2013;17 (9):757–765. doi:10.1007/s12603-013-0348-5

    Article  CAS  Google Scholar 

  11. Ismail F, Anjum MR, Mamon AN, Kazi TG. Trace Metal Contents of Vegetables and Fruits of Hyderabad Retail Market. Pakistan Journal of Nutrition 2011;10 (4):365–37.

    Article  CAS  Google Scholar 

  12. Ordovas JM. Nutrition and cognitive health. In Foresight Mental Capital and Wellbeing Project. Final Project Report London: The Government Office for Science, 2008.

    Google Scholar 

  13. Sfar S, Jawed A, Braham H, Amor S, Laporte F, Kerkeni A. Zinc, copper and antioxidant enzyme activities in healthy elderly Tunisian subjects. Experimental Gerontology 2009;44 (12):812–817.

    Article  CAS  PubMed  Google Scholar 

  14. Salgueiro MaJ, Zubillaga MB, Lysionek AE, Caro RA, Weill R, Boccio JR. The role of zinc in the growth and development of children. Nutrition 2002;18 (6):510–519.

    Article  CAS  PubMed  Google Scholar 

  15. Sandstead HH, Frederickson CJ, Penland JG. History of Zinc as Related to Brain Function. The Journal of Nutrition 2000;130 (2):496

    Google Scholar 

  16. Savarino L, Granchi D, Ciapetti G, Cenni E, Ravaglia G, Forti P, Maioli F, Mattioli R. Serum concentrations of zinc and selenium in elderly people: results in healthy nonagenarians/centenarians. Experimental Gerontology 2001;36 (2):327–339.

    Article  CAS  PubMed  Google Scholar 

  17. Maret W, Sandstead HH. Zinc requirements and the risks and benefits of zinc supplementation. Journal of Trace Elements in Medicine and Biology 2006;20 (1):3–18.

    Article  CAS  PubMed  Google Scholar 

  18. Mocchegiani E, Costarelli L, Giacconi R, Cipriano C, Muti E, Tesei S, Malavolta M. Nutrient-gene interaction in ageing and successful ageing: A single nutrient (zinc) and some target genes related to inflammatory/immune response. Mechanisms of Ageing and Development 2006;127 (6):517–525.

    Article  CAS  PubMed  Google Scholar 

  19. Hill T, Meunier N, Andriollo-Sanchez M, Ciarapica D, Hininger-Favier I, Polito A, O’Connor JM, Coudray C, Cashman KD. The relationship between the zinc nutritive status and biochemical markers of bone turnover in older European adults: the ZENITH study. European Journal of Clinical Nutrition 2005;59 (supplement 2):73–7.

    Article  CAS  Google Scholar 

  20. Marcellini F, Giuli C, Papa R, Gagliardi C, Dedoussis G, Herbein G, Fulop T, Monti D, Rink L, Jajte J, Mocchegiani E. Zinc status, psychological and nutritional assessment in old people recruited in five European countries: Zincage study. Biogerontology 2006;7 (5–6):339–345. doi:10.1007/s10522-006-9048-4

    Article  CAS  PubMed  Google Scholar 

  21. Noseworthy MD, Bray TM. Zinc deficiency exacerbates loss in blood-brain barrier integrity induced by hyperoxia measured by dynamic MRI. Proceedings of the Society for Experimental Biology and Medicine 2000;223 (2):175–18.

    Article  CAS  PubMed  Google Scholar 

  22. Ho E, Ames BN. Low intracellular zinc induces oxidative DNA damage, disrupts p53, NF?B, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proceedings of the National Academy of Sciences 2002;99 (26):16770–16775. doi:10.1073/pnas.222679399

    Article  CAS  Google Scholar 

  23. Gao S, Jin Y, Hall KS, Liang C, Unverzagt FW, Ma F, Cheng Y, Shen J, Cao J, Matesan J, Li P, Bian J, Hendrie HC, Murrel JR. Selenium level is associated with apoE e4 in rural elderly Chinese. Public Health Nutrition 2009;12 (12):2371–237.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Brown KM, Arthur JR. Selenium, selenoproteins and human health: a review. Public Health Nutrition 2001;4 (2B):593–59.

    Article  CAS  PubMed  Google Scholar 

  25. Burk RF. Selenium, an Antioxidant Nutrient. Nutrition in Clinical Care 2002;5 (2):75–79. doi:10.1046/j.1523-5408.2002.00006

    Article  PubMed  Google Scholar 

  26. Schweizer U, Schomburg L. Selenium, selenoproteins and brain function. In: Hatfield D, Berry M, Gladyshev V (eds) Selenium. Springer US, 2006;pp 233–248. doi:10.1007/0-387-33827-6_21

    Chapter  Google Scholar 

  27. Gao S, Jin Y, Hall KS, Liang C, Unverzagt FW, Ji R, Murrell JR, Cao J, Shen J, Ma F, Matesan J, Ying B, Cheng Y, Bian J, Li P, Hendrie HC. Selenium Level and Cognitive Function in Rural Elderly Chinese. American Journal of Epidemiology 2007;165 (8):955–965. doi:10.1093/aje/kwk073

    Article  PubMed Central  PubMed  Google Scholar 

  28. Gao S, Jin Y, Hall KS, Liang C, Unverzagt FW, Ma F, Cheng Y, Shen J, Cao J, Matesan J, Li P, Bian J, Hendrie HC, Murrell JR. Selenium level is associated with apoE e4 in rural elderly Chinese. Public Health Nutrition 2009;12 (12):2371–2376. doi:doi:10.1017/S1368980009005102

    Article  PubMed Central  PubMed  Google Scholar 

  29. Dietrich AM, Glindemann D, Pizarro F, Gidi V, Olivares M, Araya M, Camper A, Duncan S, Dwyer S, Whelton AJ, Younos T, Subramanian S, Burlingame GA, Khiari D, Edwards M. Health and aesthetic impacts of copper corrosion on drinking water. Water science and technology: a journal of the International Association on Water Pollution Research 2004;49 (2):55–6.

    CAS  Google Scholar 

  30. Morris M, Evans DA, Tangney CC, et al. DIetary copper and high saturated and trans fat intakes associated with cognitive decline. Archives of Neurology 2006;63 (8):1085–1088. doi:10.1001/archneur.63.8.1085

    Article  PubMed  Google Scholar 

  31. Salustri C, Barbati G, Ghidoni R, Quintiliani L, Ciappina S, Binetti G, Squitti R. Is cognitive function linked to serum free copper levels? A cohort study in a normal population. Clinical Neurophysiology 2010;121 (4):502–507.

    Article  CAS  PubMed  Google Scholar 

  32. Squitti R, Ghidoni R, Scrascia F, Benussi L, Panetta V, Pasqualetti P, Moffa F, Bernardini S, Ventriglia M, Binetti G, Rossini PM. Free Copper Distinguishes Mild Cognitive Impairment Subjects from Healthy Elderly Individuals. Journal of Alzheimer’s Disease 2011;23 (2):239–248. doi:10.3233/JAD-2010-10109.

    CAS  PubMed  Google Scholar 

  33. Lam PK, Kritz-Silverstein D, Barrett Connor E, Milne D, Nielsen F, Gamst A, Morton D, Wingard D. Plasma trace elements and cognitive function in older men and women: the Rancho Bernardo study. The Journal Of Nutrition, Health & Aging 2008;12 (1):22–2.

    Article  CAS  Google Scholar 

  34. Kessler H, Bayer T, Bach D, Schneider-Axmann T, Supprian T, Herrmann W, Haber M, Multhaup G, Falkai P, Pajonk F-G. Intake of copper has no effect on cognition in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial. J Neural Transm 2008;115 (8):1181–1187. doi:10.1007/s00702-008-0080-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT. Redox-Active Metals, Oxidative Stress, and Alzheimer’s Disease Pathology. Annals of the New York Academy of Sciences 2004;1012 (1):153–163. doi:10.1196/annals.1306.012

    Article  CAS  PubMed  Google Scholar 

  36. Morris M, Evans DA, Bienias JL, et al. DIetary fats and the risk of incident alzheimer disease. Archives of Neurology 2003;60 (2):194–200. doi:10.1001/archneur.60.2.194

    Article  PubMed  Google Scholar 

  37. Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS. Dietary fat intake and 6-year cognitive change in an older biracial community population. Neurology 2004;62 (9):1573–157.

    Article  CAS  PubMed  Google Scholar 

  38. Sparks DL, Schreurs BG. Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proceedings of the National Academy of Sciences 2003;100 (19):11065–11069. doi:10.1073/pnas.1832769100

    Article  CAS  Google Scholar 

  39. Schwarzbach E, Bonislawski DP, Xiong G, Cohen AS. Mechanisms underlying the inability to induce area CA1 LTP in the mouse after traumatic brain injury. Hippocampus 16 2006;(6):541–550. doi:10.1002/hipo.20183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Tonkikh A, Janus C, El-Beheiry H, Pennefather PS, Samoilova M, McDonald P, Ouanounou A, Carlen PL. Calcium chelation improves spatial learning and synaptic plasticity in aged rats. Experimental Neurology 2006;197 (2):291–300.

    Article  CAS  PubMed  Google Scholar 

  41. Bernard S, Enayati A, Roger H, Binstock T, Redwood L. The role of mercury in the pathogenesis of autism. Molecular Psychiatry 2002;7 (2):s42–S43

    Article  CAS  PubMed  Google Scholar 

  42. Goulet S, Doré FY, Mirault ME. Neurobehavioral changes in mice chronically exposed to methylmercury during fetal and early postnatal development. Neurotoxicology and Teratology 2003;25 (3):335–347.

    Article  CAS  PubMed  Google Scholar 

  43. Eddins D, Petro A, Pollard N, Freedman JH, Levin ED. Mercury-induced cognitive impairment in metallothionein-1/2 null mice. Neurotoxicol Teratol 2008;30 (2):88–95. doi:10.1016/j.ntt.2007.12.005S0892-0362(07)00365-0 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Park JD, Liu Y, Klaassen CD. Protective effect of metallothionein against the toxicity of cadmium and other metals. Toxicology 2001;163 (2–3):93–100.

    Article  CAS  PubMed  Google Scholar 

  45. Tamm C, Duckworth J, Hermanson O, Ceccatelli S. High susceptibility of neural stem cells to methylmercury toxicity: effects on cell survival and neuronal differentiation. Journal of Neurochemistry 2006;97 (1):69–78. doi:10.1111/j.1471-4159.2006.03718.x

    Article  CAS  PubMed  Google Scholar 

  46. Ray AL, Semba RD, Walston J, Ferrucci L, Cappola AR, Ricks MO, Xue Q-L, Fried LP. Low Serum Selenium and Total Carotenoids Predict Mortality among Older Women Living in the Community: The Women’s Health and Aging Studies. The Journal of Nutrition 2006;136 (1):172–17.

    CAS  PubMed  Google Scholar 

  47. Ducros V, Andriollo-Sanchez M, Arnaud J, Meunier N, Laporte F, Hininger-Favier I, Coudray C, Ferry M, Roussel A-M. Zinc supplementation does not alter plasma homocysteine, vitamin B12 and red blood cell folate concentrations in French elderly subjects. Journal of Trace Elements in Medicine and Biology 2009;23 (1):15–20.

    Article  CAS  PubMed  Google Scholar 

  48. Gao S, Jin Y, Unverzagt FW, Ma F, Hall KS, Murrell JR, Cheng Y, Shen J, Ying B, Ji R, Matesan J, Liang C, Hendrie HC. Trace element levels and cognitive function in rural elderly Chinese. Journals of Gerontology- Series A Biological Sciences and Medical Sciences 2008;63 (6):635–64.

    Article  Google Scholar 

  49. Bomboi G, Marchione F, Sepe-Monti M, De Carolis A, Bianchi V, Medda E, Pino A, Bocca B, Forte G, D’Ippolito C, Giubilei F. Correlation between metal ions and clinical findings in subjects affected by Alzheimer’s disease. Ann Ist Super Sanita 2005;41 (2):205–21.

    CAS  PubMed  Google Scholar 

  50. Dong J, Robertson JD, Markesbery WR, Lovell MA. Serum Zinc in the Progression of Alzheimer’s Disease. Journal of Alzheimer’s Disease 2008;15 (3):443–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Mocchegiani E, Giacconi R, Costarelli L, Muti E, Cipriano C, Tesei S, Pierpaoli S, Giuli C, Papa R, Marcellini F, Gasparini N, Pierandrei R, Piacenza F, Mariani E, Monti D, Dedoussis G, Kanoni S, Herbein G, Fulop T, Rink L, Jajte J, Malavolta M. Zinc deficiency and IL-6-174G/C polymorphism in old people from different European countries: Effect of zinc supplementation. ZINCAGE study. Experimental Gerontology 2008;43 (5):433–444.

    Article  CAS  PubMed  Google Scholar 

  52. Planas M, Conde M, Audivert S, Pérez-Portabella C, Burgos R, Chacón P, Rossello J, Boada M, Tàrraga LL. Micronutrient supplementation in mild Alzheimer disease patients. Clinical Nutrition 2004;23 (2):265–27.

    Article  CAS  PubMed  Google Scholar 

  53. Boveris A, Navarro A. Brain mitochondrial dysfunction in aging. IUBMB Life 2008;60 (5):308–314. doi:10.1002/iub.46

    Article  CAS  PubMed  Google Scholar 

  54. Roussel AM, Ferry M. Stress oxydant et vieillissement. Nutrition Clinique Et Metabolisme 2002;16:285–29.

    Article  CAS  Google Scholar 

  55. Sánchez-Rodríguez MA, Santiago E, Arronte-Rosales A, Vargas-Guadarrama LA, Mendoza-Núñez VM. Relationship between oxidative stress and cognitive impairment in the elderly of rural vs. urban communities. Life Sciences 78 2006;(15):1682–1687.

    Article  PubMed  CAS  Google Scholar 

  56. Rinaldi P, Polidori MC, Metastasio A, Mariani E, Mattioli P, Cherubini A, Catani M, Cecchetti R, Senin U, Mecocci P. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiology of aging 2003;24 (7):915–91.

    Article  CAS  PubMed  Google Scholar 

  57. Sánchez-Rodríguez MA, Retana-Ugalde R, Ruíz-Ramos M, Muñoz-Sánchez JL, Alberto Vargas-Guadarrama L, Mendoza-Núñez VM. Efficient antioxidant capacity against lipid peroxide levels in healthy elderly of Mexico City. Environmental Research 2005;97 (3):322–329.

    Article  PubMed  CAS  Google Scholar 

  58. Friedrich MJ. Scientists probe roles of mitochondria in neurological disease and injury. JAMA 2004;291 (6):679–681. doi:10.1001/jama.291.6.679291/6/679 [pii]

    Article  CAS  PubMed  Google Scholar 

  59. Schuessel K, Leutner S, Cairns NJ, Müller WE, Eckert A. Impact of gender on upregulation of antioxidant defence mechanisms in Alzheimer’s disease brain. J Neural Transm 2004;111 (9):1167–1182. doi:10.1007/s00702-004-0156-5

    CAS  PubMed  Google Scholar 

  60. Sultana R, Reed T, Butterfield DA. Redox Proteomics and Metabolic Proteins in Brain of Subjects with Alzheimer’s Disease, Mild Cognitive Impairment, and Models Thereof. In: Neural Degeneration and Repair. Wiley-VCH Verlag GmbH & Co. KGaA/, 2008;pp 181–207. doi:10.1002/9783527622467.ch9

    Chapter  Google Scholar 

  61. Baldeiras I, Santana I, Proenca MT, Garrucho MH, Pascoal R, Rodrigues A, Duro D, Oliveira CR. Peripheral oxidative damage in mild cognitive impairment and mild Alzheimer’s disease. J Alzheimers Dis 2008;15 (1):117–12.

    CAS  PubMed  Google Scholar 

  62. Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neuroscience Letters 2010;469 (1):6–10.

    Article  CAS  PubMed  Google Scholar 

  63. López N, Tormo C, De Blas I, Llinares I, Alom J. Oxidative Stress in Alzheimer’s Disease and Mild Cognitive Impairment with High Sensitivity and Specificity. Journal of Alzheimer’s Disease 2013;33 (3):823–829. doi:10.3233/JAD-2012.2152.

    PubMed  Google Scholar 

  64. Torres LL, Quaglio NB, de Souza GT, Garcia RT, Dati LMM, Moreira WL, de Melo Loureiro AP, de souza-Talarico JN, Smid J, Porto CS, de Campos Bottino CM, Nitrini R, de Moraes Barros SB, Camarini R, Marcourakis T. Peripheral Oxidative Stress Biomarkers in Mild Cognitive Impairment and Alzheimer’s Disease. Journal of Alzheimer’s Disease 2011; 26 (1):59–68. doi:10.3233/JAD-2011.11028.

    CAS  PubMed  Google Scholar 

  65. Mórocz M, Kálmán J, Juhász A, Sinkó I, McGlynn AP, Downes CS, Janka Z, Raskó I. Elevated levels of oxidative DNA damage in lymphocytes from patients with Alzheimer’s disease. Neurobiology of aging 2002;23 (1):47–53.

    Article  PubMed  Google Scholar 

  66. Migliore L, Fontana I, Trippi F, Colognato R, Coppedè F, Tognoni G, Nucciarone B, Siciliano G. Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiology of aging 2005;26 (5):567–57.

    Article  CAS  PubMed  Google Scholar 

  67. Smith MA, Nunomura A, Zhu X, Takeda A, Perry G. Metabolic, Metallic, and Mitotic Sources of Oxidative Stress in Alzheimer Disease. Antioxidants & Redox Signaling 2 2000;(3):413–42.

    Article  CAS  Google Scholar 

  68. Blair IA. Lipid hydroperoxide-mediated DNA damage. Experimental Gerontology 2001;36 (9):1473–1481.

    Article  CAS  PubMed  Google Scholar 

  69. von Zglinicki T, Bürkle A, Kirkwood TBL. Stress, DNA damage and ageing — an integrative approach. Experimental Gerontology 2001;36 (7):1049–1062.

    Article  Google Scholar 

  70. Lee LK, Shahar S, Rajab N. Serum folate concentration, cognitive impairment, and DNA damage among elderly individuals in Malaysia. Nutrition Research 2009;29 (5):327–334.

    Article  CAS  PubMed  Google Scholar 

  71. Dorszewska J, Adamczewska-Goncerzewicz Z. Oxidative damage to DNA, p53 gene expression and p53 protein level in the process of aging in rat brain. Respiratory Physiology & Neurobiology 2004;139 (3):227–236.

    Article  CAS  Google Scholar 

  72. Gedik CM, Grant G, Morrice PC, Wood SG, Collins AR. Effects of age and dietary restriction on oxidative DNA damage, antioxidant protection and DNA repair in rats. Eur J Nutr 2005;44 (5):263–272. doi:10.1007/s00394-004-0520-0

    Article  CAS  PubMed  Google Scholar 

  73. Borgesius NZ, de Waard MC, van der Pluijm I, Omrani A, Zondag GCM, van der Horst GTJ, Melton DW, Hoeijmakers JHJ, Jaarsma D, Elgersma Y. Accelerated Age-Related Cognitive Decline and Neurodegeneration, Caused by Deficient DNA Repair. The Journal of Neuroscience 2011;31 (35):12543–12553

    Article  CAS  PubMed  Google Scholar 

  74. Keller JN, Schmitt FA, Scheff SW, Ding Q, Chen Q, Butterfield DA, Markesbery WR. Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 2005;64:1152–115.

    Article  CAS  PubMed  Google Scholar 

  75. Lovell MA, Markesbery WR. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Research 2007;35 (22):7497–7504. doi:10.1093/nar/gkm821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. Journal of Neurochemistry 2005;93 (4):953–962. doi:10.1111/j.1471-4159.2005.03053.x

    Article  CAS  PubMed  Google Scholar 

  77. Martin LJ. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases. Pharmaceuticals 2010;3 (4):839–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Reddy PH. Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med 2008;10 (4):291–315. doi:10.1007/s12017-008-8044-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Reddy PH. Role of mitochondria in neurodegenerative diseases: mitochondria as a therapeutic target in Alzheimer’s disease. CNS Spectr 2009;14 (8 Suppl 7):8–13; discussion 16–18.

    PubMed Central  PubMed  Google Scholar 

  80. Schon Eric A, Przedborski S. Mitochondria: The Next (Neurode)Generation. Neuron 2011;70 (6):1033–105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Castellani R, Hirai K, Aliev G, Drew KL, Nunomura A, Takeda A, Cash AD, Obrenovich ME, Perry G, Smith MA. Role of mitochondrial dysfunction in Alzheimer’s disease. Journal of Neuroscience Research 2002;70 (3):357–360. doi:10.1002/jnr.10389

    Article  CAS  PubMed  Google Scholar 

  82. Eckert A, Keil U, Marques CA, Bonert A, Frey C, Schüssel K, Müller WE. Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease. Biochemical Pharmacology 2003;66 (8):1627–1634.

    Article  CAS  PubMed  Google Scholar 

  83. Bush AI. The metallobiology of Alzheimer’s disease. Trends in Neurosciences 2003;26 (4):207–214.

    Article  CAS  PubMed  Google Scholar 

  84. Perry G, Taddeo M, Petersen R, Castellani R, Harris PR, Siedlak S, Cash A, Liu Q, Nunomura A, Atwood C, Smith M. Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease. Biometals 2003;16 (1):77–81. doi:10.1023/a:1020731021276

    Article  CAS  PubMed  Google Scholar 

  85. Zhu X, Raina AK, Lee H-g, Casadesus G, Smith MA, Perry G. Oxidative stress signalling in Alzheimer’s disease. Brain Research 2004;1000 (1–2):32–39.

    Article  CAS  PubMed  Google Scholar 

  86. Coskun PE, Wyrembak J, Derbereva O, Melkonian G, Doran E, Lott IT, Head E, Cotman CW, Wallace DC. Systemic mitochondrial dysfunction and the etiology of Alzheimer’s disease and down syndrome dementia. J Alzheimers Dis 2010;20 Suppl 2:S293–310. doi:10.3233/JAD-2010-1003515041W7K40R382600 [pii]

    Google Scholar 

  87. Yu R-A, Chen H-J, He L-F, Chen B, Chen X-M. Telomerase Activity and Telomerase Reverse Transcriptase Expression Induced by Selenium in Rat Hepatocytes. Biomedical and Environmental Sciences 2009;22 (4):311–317.

    Article  CAS  PubMed  Google Scholar 

  88. Liu Y, Bohr VA, Lansdorp P. Telomere, telomerase and aging. Mechanisms of Ageing and Development 2008;129 (1–2):1–2.

    Article  PubMed  Google Scholar 

  89. O’sullivan J, Risques RA, Mandelson MT, Chen L, Brentnall TA, Bronner MP, MacMillan MP, Feng Z, Siebert JR, Potter JD, Rabinovitch PS. Telomere Length in the Colon Declines with Age: a Relation to Colorectal Cancer? Cancer Epidemiology Biomarkers & Prevention 2006;15 (3):573–577. doi:10.1158/1055-9965.epi-05.054.

    Article  Google Scholar 

  90. von Zglinicki T, Martin-Ruiz CM, Saretzki G. Telomeres, cell senescence and human ageing. Signal Transduction 2005;5 (3):103–114. doi:10.1002/sita.200400049

    Article  CAS  Google Scholar 

  91. Kawanishi S, Oikawa S. Mechanism of Telomere Shortening by Oxidative Stress. Annals of the New York Academy of Sciences 2004;1019 (1):278–284. doi:10.1196/annals.1297.047

    Article  CAS  PubMed  Google Scholar 

  92. Thomas P, O’Callaghan NJ, Fenech M. Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer’s disease. Mechanisms of Ageing and Development 2008;129 (4):183–190.

    Article  CAS  PubMed  Google Scholar 

  93. Jenkins EC, Velinov MT, Ye L, Gu H, Li S, Brooks SS, Pang D, Devenny DA, Zigman WB, Schupf N, Silverman WP. Telomere shortening in T lymphocytes of older individuals with Down syndrome and dementia. Neurobiology of aging 2006;27 (7):941–94.

    Article  CAS  PubMed  Google Scholar 

  94. O’Callaghan N, Bull C, Fenech M. Elevated plasma magnesium and calcium may be associated with shorter telomeres in older South Australian women. The Journal Of Nutrition, Health & Aging 2014;18 (2):131–136. doi:10.1007/s12603-013-0401-4

    Article  CAS  Google Scholar 

  95. Liu Q, Wang H, Hu D, Ding C, Xu H, Tao D. Effects of trace elements on the telomere lengths of hepatocytes L-02 and hepatoma cells SMMC-7721. Biol Trace Elem Res 2004;100 (3):215–227. doi:10.1385/bter:100:3:215

    Article  CAS  PubMed  Google Scholar 

  96. Houben JMJ, Moonen HJJ, van Schooten FJ, Hageman GJ. Telomere length assessment: Biomarker of chronic oxidative stress? Free Radical Biology and Medicine 2008;44 (3):235–246.

    Article  CAS  PubMed  Google Scholar 

  97. Liu Q, Wang H, Hu DC, Ding CJ, Xiao H, Xu HB, Shu BH, Xu SQ. Effects of sodium selenite on telomerase activity and telomere length. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2003;35 (12):1117–112.

    CAS  Google Scholar 

  98. Cui QH, Tang CC, Huang YG. Effects of lead and selenium on telomere binding protein Rap1p, telomerase and telomeric DNA in Saccharomyces cerevisiae. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2002;34 (2):240–24.

    CAS  Google Scholar 

  99. Ferry M, Roussel AM. Micronutrient status and cognitive decline in ageing. European Geriatric Medicine 2011;2 (1):15–21.

    Article  Google Scholar 

  100. Meydani M. Antioxidants and Cognitive Function. Nutrition Reviews 2001;59 (8):s75–S82. doi:10.1111/j.1753-4887.2001.tb05505.x

    Article  CAS  PubMed  Google Scholar 

  101. Mocchegiani E, Malavolta M, Marcellini F, Pawelec G. Zinc, oxidative stress, genetic background and immunosenescence: implications for healthy ageing. Immun Ageing 2006;3:6

    Article  PubMed Central  PubMed  Google Scholar 

  102. Sharif R, Thomas P, Zalewski P, Fenech M. The role of zinc in genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2012;733 (1–2):111–121.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razinah Sharif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meramat, A., Rajab, N.F., Shahar, S. et al. Cognitive impairment, genomic instability and trace elements. J Nutr Health Aging 19, 48–57 (2015). https://doi.org/10.1007/s12603-014-0489-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-014-0489-1

Key words

Navigation