Skip to main content
Log in

Predictive equations overestimate the resting metabolic rate in postmenopausal women

  • Published:
The journal of nutrition, health & aging

Abstract

The resting energetic dispenses on postmenopausal stage should be well known in order to elaborate obesity prevention programs.

Objective

The aim of this study was to compare the resting metabolic rate (RMR) measured by indirect calorimetry (RMRmeasured) with predictive equations (RMRestimated) and verify which preexisting equation is more indicated for this population, in inactive, postmenopausal women.

Design

43 postmenopausal women volunteered for the present study.

Measurements

RMRestimated value was achieved by indirect calorimetry. The predictive equations used were: Harris-Benedict equation (HB), Henry e Ree (HR), Mifflin-St Jeor equation (MSJ), World Health Organization equation (WHO) and Female Brazilian Population (FBP). Body composition was obtained through skinfolds method.

Results

All equations showed significant difference values for kcal/day (p<0.00001) (HB 1313.07±73.46; HR 1310.95±81.41; MSJ 1207.93±93.17; WHO 1375.73±61.01 and FBP 1250.05±73.54 kcal/day) in relation to RMRestimated (1063.79±157.82). The WHO equation was the one which most overestimated the RMR values with a difference of more than 300kcal/day.

Conclusion

None of the equations to approach, in this study showed precision in the estimative of RMR, all prediction equations overestimated RMR values in Brazilians’ postmenopausal women, although the MSJ predictive equation showed the greater approximation of RMRmeasured for this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foreaux G, Pinto KMC, Dâmaso A. Efeito do consumo excessivo de oxigênio após exercício e da taxa metabólica de repouso no gasto energético. Rev Bras Med Esporte. 2006;12(6):393–398.

    Article  Google Scholar 

  2. Armellini F, Zamboni M, Mino A, Bissoli L, Micciolo R, Bosello O. Postabsorptive resting metabolic rate and thermic effect of food in relation to body composition and adipose tissue distribution. Metabolism. 2000 Jan;49(1):6–10.

    Article  PubMed  CAS  Google Scholar 

  3. Aubertin-Leheudre M, Goulet ED, Dionne IJ. Enhanced rate of resting energy expenditure in women using hormone-replacement therapy: preliminary results. J Aging Phys Act. 2008 Jan;16(1):53–60.

    PubMed  Google Scholar 

  4. Lynch NA, Ryan AS, Berman DM, Sorkin JD, Nicklas BJ. Comparison of VO2max and disease risk factors between perimenopausal and postmenopausal women. Menopause. 2002 Nov–Dec;9(6):456–462.

    Article  PubMed  Google Scholar 

  5. Sternfeld B, Bhat AK, Wang H, Sharp T, Quesenberry CP, Jr. Menopause, physical activity, and body composition/fat distribution in midlife women. Med Sci Sports Exerc. 2005 Jul;37(7):1195–1202.

    Article  PubMed  Google Scholar 

  6. Piche ME, Lapointe A, Weisnagel SJ, Corneau L, Nadeau A, Bergeron J, et al. Regional body fat distribution and metabolic profile in postmenopausal women. Metabolism. 2008 Aug;57(8):1101–1107.

    Article  PubMed  CAS  Google Scholar 

  7. Paolisso G, Gambardella A, Balbi V, Ammendola S, D’Amore A, Varricchio M. Body composition, body fat distribution, and resting metabolic rate in healthy centenarians. Am J Clin Nutr. 1995 Oct;62(4):746–750.

    PubMed  CAS  Google Scholar 

  8. Krems C, Luhrmann PM, Strassburg A, Hartmann B, Neuhauser-Berthold M. Lower resting metabolic rate in the elderly may not be entirely due to changes in body composition. Eur J Clin Nutr. 2005 Feb;59(2):255–262.

    Article  PubMed  CAS  Google Scholar 

  9. McClave SA, Lowen CC, Kleber MJ, McConnell JW, Jung LY, Goldsmith LJ. Clinical use of the respiratory quotient obtained from indirect calorimetry. JPEN J Parenter Enteral Nutr. 2003 Jan–Feb;27(1):21–26.

    Article  PubMed  Google Scholar 

  10. Wahrlich V, dos Anjos LA. [Historical and methodological aspects of the measurement and prediction of basal metabolic rate: a review]. Cad Saude Publica. 2001 Jul–Aug;17(4):801–817.

    Article  PubMed  CAS  Google Scholar 

  11. Harrison GG, Buskirk ER, Carter JEL, al e. Skinfold thicknesses and measurement technique. Anthropometric standardization reference manual. Champaign, Illinois: Human Kinetics Books; 1988. p. 55–80.

    Google Scholar 

  12. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990 Feb;51(2):241–247.

    PubMed  CAS  Google Scholar 

  13. Weijs PJ. Validity of predictive equations for resting energy expenditure in US and Dutch overweight and obese class I and II adults aged 18–65 y. Am J Clin Nutr. 2008 Oct;88(4):959–970.

    PubMed  CAS  Google Scholar 

  14. Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc. 1980;12(3):175–181.

    PubMed  CAS  Google Scholar 

  15. Siri WE. Body composition from fluid spaces and density: analysis of methods. 1961. Nutrition. 1993 Sep–Oct;9(5):480–91; discussion, 92.

    PubMed  CAS  Google Scholar 

  16. Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949 Aug;109(1–2):1–9.

    PubMed  Google Scholar 

  17. NCEP. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). Jama. 2001 May 16;285(19):2486–2497.

    Article  Google Scholar 

  18. Energy and protein requirements. Report of a joint FAO/WHO/UNU Expert Consultation. World Health Organ Tech Rep Ser. 1985;724:1–206.

    Google Scholar 

  19. Henry CJ, Rees DG. New predictive equations for the estimation of basal metabolic rate in tropical peoples. Eur J Clin Nutr. 1991 Apr;45(4):177–185.

    PubMed  CAS  Google Scholar 

  20. Rodrigues AE, Mancini MC, Dalcanale L, Melo ME, Cercato C, Halpern A. Characterization of metabolic resting rate and proposal of a new equation for a female Brazilian population. Arq Bras Endocrinol Metabol. 2010;54(5):470–476.

    Article  PubMed  Google Scholar 

  21. Trevisan MC, Burini RC. Metabolismo de repouso de mulheres pós-menopausadas submetidas a programa de treinamento com pesos (hipertrofia). Rev Bras Med Esporte 2007;13(2):133–137.

    Article  Google Scholar 

  22. Bonganha V, Conceicao MS, Santos CF, Chacon-Mikahil MP, Madruga VA. [Resting metabolic rate and body composition in postmenopausal women]. Arq Bras Endocrinol Metabol. 2009 Aug;53(6):755–759.

    Article  PubMed  Google Scholar 

  23. Kabir M, Catalano KJ, Ananthnarayan S, Kim SP, Van Citters GW, Dea MK, et al. Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance. Am J Physiol Endocrinol Metab. 2005 Feb;288(2):E454–E461.

    Article  PubMed  CAS  Google Scholar 

  24. Luhrmann PM, Herbert BM, Neuhauser-Berthold M. Effects of fat mass and body fat distribution on resting metabolic rate in the elderly. Metabolism. 2001 Aug;50(8):972–975.

    Article  PubMed  CAS  Google Scholar 

  25. Arner P. Differences in lipolysis between human subcutaneous and omental adipose tissue. Ann Med. 1995;27:435–438.

    Article  PubMed  CAS  Google Scholar 

  26. Hoffstedt J, Arner P, Hellers G, Lonnqvist F. Variation in adrenergic regulation of lipolysis between omental and subcutaneous adipocytes from obese and non-obese men. J Lipid Res. 1997;38 795–804.

    PubMed  CAS  Google Scholar 

  27. Ross R, Shaw KD, Rissanen J, Martel Y, de Guise J, Avruch L. Sex differences in lean and adipose tissue distribution by magnetic resonance imaging: anthropometric relationships. Am J Clin Nutr. 1994 Jun;59(6):1277–1285.

    PubMed  CAS  Google Scholar 

  28. Horgan GW, Stubbs J. Predicting basal metabolic rate in the obese is difficult. Eur J Clin Nutr. 2003 Feb;57(2):335–340.

    Article  PubMed  CAS  Google Scholar 

  29. Poehlman ET, Toth MJ, Gardner AW. Changes in energy balance and body composition at menopause: a controlled longitudinal study. Ann Intern Med. 1995 Nov 1;123(9):673–675.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonganha, V., Libardi, C.A., Santos, C.F. et al. Predictive equations overestimate the resting metabolic rate in postmenopausal women. J Nutr Health Aging 17, 211–214 (2013). https://doi.org/10.1007/s12603-012-0395-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-012-0395-3

Key words

Navigation