Skip to main content
Log in

Accuracy of Siri and Brozek equations in the percent body fat estimation in older adults

  • Accuracy of Siri and Brozek Equations in the Percent Body Fat Estimation in Older Adults
  • Published:
The journal of nutrition, health & aging

Abstract

Objective

To identify which equation, Siri or Brozek, based on the two compartment model, provides a more accurate conversion of body density (BD) in percent body fat (%BF) in a group of older adults.

Study design

Cross-sectional study.

Setting

Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto.

Participants

60 older adults, aged 60–92 years.

Measurements

Skinfold thickness was used to estimate BD through Visser et al. prediction equation. The conversion of BD to %BF was done with Siri (%BF-Siri) and Brozek (%BF-Brozek) formulas and these determined values were both compared to Dual-Energy X-ray Absorptiometry (%BF-DXA) evaluations.

Results

A strong correlation between the %BF-DXA value and %BF-Siri (r=0.91, p<0.001) and %BF-Brozek (r=0.91, p<0.001) was found, although %BF-Siri and %BF-Brozek overestimated %BF-DXA (p<0.001). The comparison of the %BF-Siri and %BF-Brozek mean values also revealed significant differences (p<0.001). The %BF-Brozek reflects a better agreement than the %BF-Siri with %BF-DXA with respectively a mean difference of −4.0%BF (limits of agreement = −10.9 to 2.9%) and −5.7%BF (−12.6 to 1.2). The Bland and Altman plots confirmed that %BF-Brozek reflects a better agreement with %BF-DXA.

Conclusion

The results of the present study show that the use of Brozek equation may correspond to a more accurate alternative than Siri equation for the conversion of BD in %BF in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deurenberg P, Deurenberg-Yap M. Ageing and changes in body composition: the importance of valid measurements; in: Food for the ageing population. Cambridge, Woodhead Publishing Limited; 2009, Chap 9, pp. 169–183.

    Google Scholar 

  2. Visser M, van den Heuvel E, Deurenberg P. Prediction equations for the estimation of body composition in the elderly using anthropometric data. Br J Nutr 1994;71(6):823–833.

    Article  CAS  PubMed  Google Scholar 

  3. Gibson RS. Anthropometric Assessment of Body Composition; in: Principles of Nutritional Assessment. 2nd ed. New York, Oxford University Press; 2005, Chap 11, pp. 272–289.

    Google Scholar 

  4. Omran ML, Morley JE. Assessment of protein energy malnutrition in older persons, part I: History, examination, body composition, and screening tools. Nutrition. 2000;16(1):50–63.

    Article  CAS  PubMed  Google Scholar 

  5. Huerta RH, Esparza-Romero J, Urquidez R, Pacheco BI, Valencia ME, Alemán-Mateo H. Validity of an equation based on anthropometry to estimate body fat in older adults. Arch Latinoam Nutr. 2007;57(4):357–365.

    PubMed  Google Scholar 

  6. Pongchaiyakul C, Kosulwat V, Rojroongwasinkul N, Charoenkiatkul S, Thepsuthammarat K, Laopaiboon M, Nguyen TV, Rajatanavin R. Prediction of percentage body fat in rural Thai population using simple anthropometric measurements. Obes Res. 2005;13(4):729–738.

    Article  PubMed  Google Scholar 

  7. Kwok T, Woo J, Lau E. Prediction of body fat by anthropometry in older Chinese people. Obes Res. 2001;9(2):97–101.

    Article  CAS  PubMed  Google Scholar 

  8. Peterson MJ, Czerwinski SA, Siervogel RM. Development and validation of skinfold-thickness prediction equations with a 4-compartment model. Am J Clin Nutr. 2003;77(5):1186–1191.

    CAS  PubMed  Google Scholar 

  9. Ball SD, Altena TS, Swan PD. Comparison of anthropometry to DXA: a new prediction equation for men. Eur J Clin Nutr. 2004;58(11):1525–1531.

    Article  CAS  PubMed  Google Scholar 

  10. Ball SD, Swan PD, DeSimone R. Comparison of anthropometry to dual energy X-ray absorptiometry: a new prediction equation for women. Res Q Exerc Sport. 2004;75(3):248–258.

    PubMed  Google Scholar 

  11. van der Ploeg GE, Gunn SM, Withers RT, Modra AC. Use of anthropometric variables to predict relative body fat determined by a four-compartment body composition model. Eur J Clin Nutr. 2003;57(8):1009–1016.

    Article  PubMed  Google Scholar 

  12. Siri WE. Body composition from fluid spaces and density: analyses of methods; in: Techniques for measuring body composition. Washington DC, Natl Acad. Sci. National Res. Council, 1961, pp. 223–244.

    Google Scholar 

  13. Brozek J, Grande F, Anderson T, Keys A. Densitometric analysis of body composition: Revision of some quantitative assumptions. Ann N Y Acad Sci 1963;26(110):113–140.

    Google Scholar 

  14. Heymsfield SB, Lohman TG, Wong Z, Going SB. Human Body Composition, 2nd edition. Champaign, IL: Human Kinetics; 2005.

    Google Scholar 

  15. Bemben MG, Massey BH, Bemben DA, Boileau RA, Misner JE. Age-related variability in body composition methods for assessment of percent fat and fat-free mass in men aged 20–74 years. Age Ageing 1998;27(2):147–153.

    Article  CAS  PubMed  Google Scholar 

  16. Goran MI, Toth MJ, Poehlman ET. Assessment of research-based body composition techniques in healthy elderly men and women using the 4 compartment model as a criterion method. Int J Obes Metab Disord 1998;22(2):135–142.

    Article  CAS  Google Scholar 

  17. Deurenberg P, Weststrate JA, van der Kooy K. Is an adaptation of Siri’s formula for the calculation of body fat percentage from body density in the elderly necessary? Eur J Clin Nutr 1989;43(8):559–567.

    CAS  PubMed  Google Scholar 

  18. Arroyo M, Rocandio AM, Ansotegui L, Herrera H, Salces I, Rebato E. Comparison of predicted body fat percentage from anthropometric methods and from impedance in university students. Br J Nutr. 2004;92(5):827–832.

    Article  CAS  PubMed  Google Scholar 

  19. Yao M, Roberts SB, Ma G, Pan H, McCrory MA. Field methods for body composition assessment are valid in healthy chinese adults. J Nutr. 2002;132(2):310–317.

    CAS  PubMed  Google Scholar 

  20. Haapala I, Hirvonen A, Niskanen L, Uusitupa M, Kröger H, Alhava E, Nissinen A. Anthropometry, bioelectrical impedance and dual-energy X-ray absorptiometry in the assessment of body composition in elderly Finnish women. Clin Physiol Funct Imaging 2002;22(6):383–391.

    Article  PubMed  Google Scholar 

  21. Svendsen OL, Haarbo J, Heitmann BL, Gotfredsen A, Christiansen C. Measurement of body fat in elderly subjects by dual-energy x-ray absorptiometry, bioelectrical impedance, and anthropometry. Am J Clin Nutr 1991;53(5):1117–1123.

    CAS  PubMed  Google Scholar 

  22. Salamone LM, Fuerst T, Visser M, Kern M, Lang T, Dockrell M, Cauley JA, Nevitt M, Tylavsky F, Lohman TG. Measurement of fat mass using DEXA. a validation study in elderly adults. J Appl Physiol 2000;89(1):345–352.

    CAS  PubMed  Google Scholar 

  23. The World Medical Association, Declaration of Helsinki [homepage]. WMA; 2008 [quoted on 2009 Dec 04]. Policy. Available in: http://www.wma.net/en/30publications/10policies/b3/index.html

  24. Marfell-Jones M, Olds T, Stewart A, Carter L. International standards for anthropometric assessment. South Africa, Potchefstroom, International Standards for Anthropometric Assessment, 2006.

    Google Scholar 

  25. Coin A, Sergi G, Minicuci N, Giannini S, Barbiero E, Manzato E, Pedrazzoni M, Minisola S, Rossini M, Del Puente A, Zamboni M, Inelmen EM, Enzi G. Fat-free mass and fat mass reference values by dual-energy X-ray absorptiometry (DEXA) in a 20–80 year-old Italian population. Clin Nutr 2008;27(1):87–94.

    Article  PubMed  Google Scholar 

  26. WHO, 2000. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation. WHO Technical Report Series 894. World Health Organization, Geneva.

    Google Scholar 

  27. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307–310.

    CAS  PubMed  Google Scholar 

  28. Kensara OA, Wootton SA, Phillips DI, Patel M, Jackson AA, Elia M. Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr 2005;82(5):980–987.

    CAS  PubMed  Google Scholar 

  29. Reilly JJ, Murray LA, Wilson J, Durnin JV. Prediction of body density from skinfold thickness in elderly subjects: are the existing equations valid? Ann Hum Biol 1994;21(6):613–616.

    Article  CAS  PubMed  Google Scholar 

  30. Durnin JVGA, Womersley J. Body fat assessed from total body-density and its estimation from skinfold thickness: measurements on 481 men and woman aged from 16 to 72 years. Br J Nutr. 1974;32(1):77–97.

    Article  CAS  PubMed  Google Scholar 

  31. Schwartz RS, Shuman WP, Bradbury VL, Cain KC, Fellingham GW, Beard JC, Kahn SE, Stratton JR, Cerqueira MD, Abrass IB. Body fat distribution in healthy young and older men. J Gerontol. 1990;45(6):181–185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa F. Amaral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra, R.S., Amaral, T.F., Marques, E. et al. Accuracy of Siri and Brozek equations in the percent body fat estimation in older adults. J Nutr Health Aging 14, 744–748 (2010). https://doi.org/10.1007/s12603-010-0112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-010-0112-z

Key words

Navigation