Skip to main content
Log in

Carla Task Force on Sarcopenia: Propositions for clinical trials

  • Published:
JNHA - The Journal of Nutrition, Health and Aging

Abstract

In the presence of an aging population, public health priorities need to evolve. As the populations gets older, the already existing pathologies have become commonplace with specific geriatric clinical syndromes like frailty, mobility disability, or cognitive impairment, among others. Sarcopenia is a good example for which geriatricians, neurologists, physiologists, nutritionists and epidemiologists need to find a consensual definition and diagnostic tool as well as guidelines for the management of clinical trials and possible treatments. The Carla Sarcopenia Task Force, which met in the south of France (Toulouse) for an expert consensus meeting called “Les Entretiens du Carla“, have addressed a series of existing issues to place Sarcopenia into a nosological context: a definition which should be a composite of a change in muscle mass and a change in strength/function depending on either a progressive and chronic wasting process or an acute onset of loss of muscle mass; a recommendation for DXA and the Short Physical Performance Battery as a clinical pragmatic approach of Sarcopenia; a differentiated approach for clinical studies according to prevention or treatment objectives and depending on the sub-groups and target populations; and finally, a summary of therapeutic strategies currently recommended. The aim of “Les Entretiens du Carla”, based on an expert meeting panel, was to address a series of unsolved issues in the field of Sarcopenia by combining the expert opinion with a revision of the existing literature on the topic. Through this report, the reader will appreciate the determination to find conclusions on the various issues and further studies to be developed to determine the best multidisciplinary approach needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr 1997;127(Suppl):990S–991S.

    CAS  PubMed  Google Scholar 

  2. Evans W. Functional and metabolic consequences of sarcopenia. J Nutr. 1997; 127(5 Suppl): 998S–1003S

    CAS  PubMed  Google Scholar 

  3. Guralnik JM, et al. Progressive versus catastrophic loss of the ability to walk: implications for the prevention of mobility loss. J Am Geriatr Soc. 2001; 49(11): 1463–1470

    Article  CAS  PubMed  Google Scholar 

  4. Roth SM, Ferrell RF, and Hurley BF. Strength training for the prevention and treatment of sarcopenia. J Nutr Health Aging. 2000; 4(3): 143–155

    CAS  PubMed  Google Scholar 

  5. Borst SE. Interventions for sarcopenia and muscle weakness in older people. Age Ageing. 2004; 33(6): 548–555

    Article  PubMed  Google Scholar 

  6. Nelson, M.E., et al., Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation. 2007; 116(9): 1094–1105

    Article  PubMed  Google Scholar 

  7. Vandervoort AA. Aging of the human neuromuscular system. Muscle Nerve. 2002; 25(1): 17–25

    Article  CAS  PubMed  Google Scholar 

  8. Hakkinen K et al. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol. 1998; 84(4): 1341–1349

    CAS  PubMed  Google Scholar 

  9. Taaffe DR et al. Once-weekly resistance exercise improves muscle strength and neuromuscular performance in older adults. J Am Geriatr Soc. 1999; 47(10): 1208–1214

    CAS  PubMed  Google Scholar 

  10. Strength training among adults aged >65 years — United States 2001. In MMWR. 2004, US department of health and human services. p. 25–28

  11. Morley JE. Anorexia and weight loss in older persons. J Gerontol A Biol Sci Med Sci. 2003; 58(2): 131–137

    PubMed  Google Scholar 

  12. Heiat A, Vaccarino V, and Krumholz HM. An evidence-based assessment of federal guidelines for overweight and obesity as they apply to elderly persons. Arch Intern Med. 2001; 161(9): 1194–1203

    Article  CAS  PubMed  Google Scholar 

  13. Elia M. Obesity in the elderly. Obes Res. 2001; 9Suppl 4: 244S–248S

    Article  PubMed  Google Scholar 

  14. Morais JA, Chevalier S, and Gougeon R. Protein turnover and requirements in the healthy and frail elderly. J Nutr Health Aging. 2006; 10(4): 272–283

    CAS  PubMed  Google Scholar 

  15. Houston DK, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr. 2008; 87(1): 150–155

    CAS  PubMed  Google Scholar 

  16. Borst SE. Interventions for sarcopenia and muscle weakness in older people. Age Ageing. 2004; 33(6): 548–555

    Article  PubMed  Google Scholar 

  17. Fujita S, and Volpi E. Amino acids and muscle loss with aging. J Nutr. 2006; 136(Suppl 1): 277S–280S

    CAS  PubMed  Google Scholar 

  18. Timmerman KL and Volpi E. Amino acid metabolism and regulatory effects in aging. Curr Opin Clin Nutr Metab Care. 2008; 11(1): 45–49

    Article  CAS  PubMed  Google Scholar 

  19. Volpi E, et al. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr. 2003; 78(2): 250–258

    CAS  PubMed  Google Scholar 

  20. Drummond MJ, et al. Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J Appl Physiol. 2008

  21. Hayes A and Cribb PJ. Effect of whey protein isolate on strength, body composition and muscle hypertrophy during resistance training. Curr Opin Clin Nutr Metab Care. 2008; 11(1): 40–44

    Article  CAS  PubMed  Google Scholar 

  22. Rieu I, et al. Increased availability of leucine with leucine-rich whey proteins improves postprandial muscle protein synthesis in aging rats. Nutrition. 2007; 23(4): 323–331

    Article  CAS  PubMed  Google Scholar 

  23. Arnal MA, et al. Protein pulse feeding improves protein retention in elderly women. Am J Clin Nutr. 1999; 69(6): 1202–1208

    CAS  PubMed  Google Scholar 

  24. Wolfson L, et al. Training balance and strength in the elderly to improve function. J Am Geriatr Soc. 1993; 41(3): 341–343

    CAS  PubMed  Google Scholar 

  25. Sayer AA, et al. Falls, sarcopenia, and growth in early life: findings from the Hertfordshire cohort study. Am J Epidemiol. 2006; 164(7): 665–671

    Article  PubMed  Google Scholar 

  26. Sayer AA, et al. Does sarcopenia originate in early life? Findings from the Hertfordshire cohort study. J Gerontol A Biol Sci Med Sci. 2004; 59(9): M930–M934

    PubMed  Google Scholar 

  27. Szulc P, et al. Increased bone resorption in moderate smokers with low body weight: the Minos study. J Clin Endocrinol Metab. 2002; 87(2): 666–674

    Article  CAS  PubMed  Google Scholar 

  28. Ottenbacher KJ, et al. Androgen treatment and muscle strength in elderly men: A meta-analysis. J Am Geriatr Soc. 2006; 54(11): 1666–1673

    Article  PubMed  Google Scholar 

  29. Bhasin S and Buckwalter JG. Testosterone supplementation in older men: a rational idea whose time has not yet come. J Androl. 2001; 22(5): 718–731

    CAS  PubMed  Google Scholar 

  30. Borst SE, et al. Anabolic effects of testosterone are preserved during inhibition of 5alpha-reductase. Am J Physiol Endocrinol Metab. 2007; 293(2): E507–E514

    Article  CAS  PubMed  Google Scholar 

  31. Parsons JK, et al. Serum testosterone and the risk of prostate cancer: potential implications for testosterone therapy. Cancer Epidemiol Biomarkers Prev. 2005; 14(9): 2257–2260

    Article  CAS  PubMed  Google Scholar 

  32. Yarasheski KE, et al. Effect of growth hormone and resistance exercise on muscle growth and strength in older men. Am J Physiol. 1995; 268: E268–E276

    CAS  PubMed  Google Scholar 

  33. Takala J, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999; 341(11): 785–792

    Article  CAS  PubMed  Google Scholar 

  34. Blackman MR, et al. Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. Jama. 2002; 288(18): 2282–2292

    Article  CAS  PubMed  Google Scholar 

  35. Frost RA, Nystrom GJ, and Lang CH. Regulation of IGF-I mRNA and signal transducers and activators of transcription-3 and -5 (Stat-3 and -5) by GH in C2C12 myoblasts. Endocrinology. 2002; 143(2): 492–503

    Article  CAS  PubMed  Google Scholar 

  36. Barbieri M, et al. Chronic inflammation and the effect of IGF-I on muscle strength and power in older persons. Am J Physiol Endocrinol Metab. 2003; 284(3): E481–E487

    CAS  PubMed  Google Scholar 

  37. Cappola AR, et al. Association of IGF-I levels with muscle strength and mobility in older women. J Clin Endocrinol Metab. 2001; 86(9): 4139–4146

    Article  CAS  PubMed  Google Scholar 

  38. Onder G, et al. Body mass index, free insulin-like growth factor I, and physical function among older adults: results from the ilSIRENTE study. Am J Physiol Endocrinol Metab. 2006; 291(4): E829–E834

    Article  CAS  PubMed  Google Scholar 

  39. Thompson JL, et al. Effects of human growth hormone, insulin-like growth factor I, and diet and exercise on body composition of obese postmenopausal women. J Clin Endocrinol Metab. 1998; 83(5): 1477–1484

    Article  CAS  PubMed  Google Scholar 

  40. Pollak M. Insulin-like growth factor physiology and cancer risk. Eur J Cancer. 2000; 36(10): 1224–1228

    Article  CAS  PubMed  Google Scholar 

  41. Artaza JN, et al. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells. Endocrinology. 2005; 146(8): 3547–3557

    Article  CAS  PubMed  Google Scholar 

  42. Schuelke M, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med. 2004; 350(26): 2682–2688

    Article  CAS  PubMed  Google Scholar 

  43. Siriett V, et al. Antagonism of myostatin enhances muscle regeneration during sarcopenia. Mol Ther. 2007; 15(8): 1463–1470

    Article  CAS  PubMed  Google Scholar 

  44. Jacobsen DE, et al. Postmenopausal HRT and tibolone in relation to muscle strength and body composition. Maturitas. 2007; 58(1): 7–18

    Article  CAS  PubMed  Google Scholar 

  45. Lemoine S, et al. Estrogen receptor alpha mRNA in human skeletal muscles. Med Sci Sports Exerc. 2003; 35(3): 439–443

    Article  CAS  PubMed  Google Scholar 

  46. Wiik A, et al. Oestrogen receptor beta is present in both muscle fibres and endothelial cells within human skeletal muscle tissue. Histochem Cell Biol. 2005; 124(2): 161–165

    Article  CAS  PubMed  Google Scholar 

  47. Bischoff-Ferrari HA, Willett WC, Wong JB, et al.: Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Intern Med 2009; 169(6): 551–561.

    Article  CAS  PubMed  Google Scholar 

  48. Bischoff-Ferrari HA, Borchers M, Gudat F, Durmuller U, Stahelin HB, Dick W: Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res 2004; 19(2): 265–269.

    Article  CAS  PubMed  Google Scholar 

  49. Broe KE, Chen TC, Weinberg J, Bischoff-Ferrari HA, Holick MF, Kiel DP: A higher dose of vitamin d reduces the risk of falls in nursing home residents: a randomized, J Am Geriatr Soc 2007; 55(2): 234–239.

    Article  PubMed  Google Scholar 

  50. Bischoff HA, Stahelin HB, Dick W, et al.: Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res 2003; 18(2): 343–51.

    Article  CAS  PubMed  Google Scholar 

  51. Flicker L, MacInnis RJ, Stein MS, et al.: Should all older people in residential care receive vitamin D to prevent falls? Results of a randomized trial. JBMR 2004; 19,Suppl. 1, abstract F459: S99.

    Google Scholar 

  52. Prince RL, Devine A, Dhaliwal SS, Dick IM: Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women. Arch Intern Med. 2006; 166(8): 869–875.

    Article  CAS  PubMed  Google Scholar 

  53. Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H: Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int 2009; 20(2): 315–22.

    Article  CAS  PubMed  Google Scholar 

  54. Bischoff-Ferrari HA, Orav EJ, Dawson-Hughes B: Effect of cholecalciferol plus calcium on falling in ambulatory older men and women: a 3-year randomized controlled trial. Arch Intern Med. 2006; 166(4): 424–430.

    Article  CAS  PubMed  Google Scholar 

  55. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, et al.: Fall prevention with supplemental and alpha-hydroxylated vitamin D: a meta-analysis of randomized controlled trials Bmj; in press 2009.

  56. Pfeifer M, Begerow B, Minne HW, Abrams C, Nachtigall D, Hansen C: Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women. J Bone Miner Res 2000; 15(6): 1113–1118.

    Article  CAS  PubMed  Google Scholar 

  57. Candow DG and Chilibeck PD. Effect of creatine supplementation during resistance training on muscle accretion in the elderly. J Nutr Health Aging. 2007; 11(2): 185–188

    CAS  PubMed  Google Scholar 

  58. Brose A, Parise G, and Tarnopolsky MA. Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. J Gerontol A Biol Sci Med Sci. 2003; 58(1): 11–19

    PubMed  Google Scholar 

  59. Bermon S, et al. Effects of creatine monohydrate ingestion in sedentary and weight trained older adults. Acta Physiol Scand. 1998; 164(2): 147–155

    Article  CAS  PubMed  Google Scholar 

  60. Chrusch MJ, et al. Creatine supplementation combined with resistance training in older men. Med Sci Sports Exerc. 2001; 33(12): 2111–2117

    Article  CAS  PubMed  Google Scholar 

  61. Eijnde BO, et al. Effects of creatine supplementation and exercise training on fitness in men 55–75 yr old. J Appl Physiol. 2003; 95(2): 818–828

    CAS  PubMed  Google Scholar 

  62. Gotshalk LA, et al. Creatine supplementation improves muscular performance in older men. Med Sci Sports Exerc. 2002; 34(3): 537–543

    Article  CAS  PubMed  Google Scholar 

  63. Jakobi JM, et al. Neuromuscular properties and fatigue in older men following acute creatine supplementation. Eur J Appl Physiol. 2001; 84(4): 321–328

    Article  CAS  PubMed  Google Scholar 

  64. Tarnopolsky MA and Safdar A. The potential benefits of creatine and conjugated linoleic acid as adjuncts to resistance training in older adults. Appl Physiol Nutr Metab. 2008; 33(1): 213–227

    Article  CAS  PubMed  Google Scholar 

  65. Carter CS, et al. Angiotensin-converting enzyme inhibition intervention in elderly persons: effects on body composition and physical performance. J Gerontol A Biol Sci Med Sci. 2005; 60(11): 1437–1446

    PubMed  Google Scholar 

  66. Onder G, et al. Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study. Lancet. 2002; 359(9310): 926–930

    Article  CAS  PubMed  Google Scholar 

  67. Han Y, Runge MS, and Brasier AR. Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-kappa B transcription factors. Circ Res. 1999; 84(6): 695–703

    CAS  PubMed  Google Scholar 

  68. Payne GW. Effect of inflammation on the aging microcirculation: impact on skeletal muscle blood flow control. Microcirculation. 2006; 13(4): 343–352

    Article  CAS  PubMed  Google Scholar 

  69. Vescovo G, et al. Improved exercise tolerance after losartan and enalapril in heart failure: correlation with changes in skeletal muscle myosin heavy chain composition. Circulation. 1998; 98(17): 1742–1749

    CAS  PubMed  Google Scholar 

  70. Onder G, Vedova CD, and Pahor M. Effects of ACE inhibitors on skeletal muscle. Curr Pharm Des. 2006; 12(16): 2057–2064

    Article  CAS  PubMed  Google Scholar 

  71. Haslett P, et al. The metabolic and immunologic effects of short-term thalidomide treatment of patients infected with the human immunodeficiency virus. AIDS Res Hum Retroviruses. 1997; 13(12): 1047–1054

    Article  CAS  PubMed  Google Scholar 

  72. Calabrese LH, Zein N, and Vassilopoulos D. Safety of antitumour necrosis factor (anti-TNF) therapy in patients with chronic viral infections: hepatitis C, hepatitis B, and HIV infection. Ann Rheum Dis. 2004; 63Suppl 2: ii18–ii24

    Article  CAS  PubMed  Google Scholar 

  73. Robinson SM, et al. Diet and its relationship with grip strength in community dwelling older men and women: the Hertfordshire cohort study. J Am Geriatr Soc. 2008; 56(1): 84–90

    PubMed  Google Scholar 

  74. Silventoinen K, et al. Heritability of body size and muscle strength in young adulthood: a study of one million Swedish men. Genet Epidemiol. 2008; 32(4): 341–349

    Article  PubMed  Google Scholar 

  75. Mascher H, et al. Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol Endocrinol Metab. 2008; 294(1): E43–E51

    Article  CAS  PubMed  Google Scholar 

  76. Marzetti E, and Leeuwenburgh C. Skeletal muscle apoptosis, sarcopenia and frailty at old age. Exp Gerontol. 2006; 41(12): 1234–1238

    Article  CAS  PubMed  Google Scholar 

  77. Marzetti E, et al. Effects of short-term GH supplementation and treadmill exercise training on physical performance and skeletal muscle apoptosis in old rats. Am J Physiol Regul Integr Comp Physiol. 2008; 294(2): R558–R567

    CAS  PubMed  Google Scholar 

  78. Phillips T, and Leeuwenburgh C. Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction. Faseb J. 2005; 19(6): 668–670

    CAS  PubMed  Google Scholar 

  79. Abellan van Kan G. Epidemiology and consequences of Sarcopenia. J Nutr Health Aging. 2009; 13(8):708–712

    CAS  PubMed  Google Scholar 

  80. Visser M. Towards a definition of sarcopenia — results from epidemiologic studies. J Nutr Health Aging. 2009; 13(8):713–716

    CAS  PubMed  Google Scholar 

  81. Boirie Y. Physiopathological mechanism of Sarcopenia. J Nutr Health Aging. 2009; 13(8):717–723

    CAS  PubMed  Google Scholar 

  82. Pahor M, Manini M. Sarcopenia: clinical evaluation, biological markers and other evaluation tools. J Nutr Health Aging. 2009; 13(8):724–728

    CAS  PubMed  Google Scholar 

  83. Studenski S. Target Population for Clinical Trials. J Nutr Health Aging. 2009; 13(8):729–732

    CAS  PubMed  Google Scholar 

  84. Studenski S. What are the Outcomes of Treatment among Patients with Sarcopenia? J Nutr Health Aging. 2009; 13(8):733–736

    CAS  PubMed  Google Scholar 

  85. Bischoff-Ferrari HA. Validated treatments and therapeutic perspectives regarding nutritherapy. J Nutr Health Aging. 2009; 13(8):737–741

    Article  CAS  PubMed  Google Scholar 

  86. Rolland Y, Pillard F. Validated treatments and therapeutic perspectives regarding physical activities. J Nutr Health Aging. 2009; 13(8):742–745

    CAS  PubMed  Google Scholar 

  87. Onder G, C. Della Vedova C, Landi F. Validated treatments and therapeutics prospectives regarding pharmacological products for Sarcopenia. J Nutr Health Aging. 2009; 13(8):746–756

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Ritz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abellan Van Kan, G., André, E., Bischoff-Ferrari, H.A. et al. Carla Task Force on Sarcopenia: Propositions for clinical trials. J Nutr Health Aging 13, 700–707 (2009). https://doi.org/10.1007/s12603-009-0200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-009-0200-0

Keywords

Navigation