Skip to main content

Advertisement

Log in

Isolation, Characterization and Biosafety Evaluation of Lactobacillus Fermentum OK with Potential Oral Probiotic Properties

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

It has been reported that certain probiotic bacteria have inhibitory effects against oral pathogens. Lactobacillus spp. have been studied and used as probiotics globally, but due to difficulties with laboratory cultivation and experimentation with oral microorganisms, there are few studies on Lactobacillus spp. isolated from the oral cavity being used against oral pathogens. The purpose of this study was to evaluate the biosafety and inhibitory effects of Lactobacillus fermentum OK as a potential oral biotherapeutic probiotic against oral pathogens. L. fermentum OK was evaluated based on microbial and genetic characteristics. A 5% dilution of L. fermentum OK culture supernatant showed that 60% inhibition against the growth of S. mutans and L. fermentum OK displayed significant inhibitory effects against the growth of Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus gordonii, and Streptococcus sanguinis. However, proliferation of L. fermentum OK, when co-cultured with harmful oral bacteria, was retarded. L. fermentum OK was shown to produce 1130 μmol/L hydrogen peroxide, aggregate efficiently with Streptococcus sobrinus, S. gordonii, S. mutans, S. sanguinis, and P. gingivalis, and reduce S. mutans that produced artificial dental plaque by 97.9%. The in vitro cell adhesion capacity of L. fermentum OK to an oral epithelial cell line was 3.1 cells per cell and the cell adhesion of F. nucleatum and S. mutans decreased strongly in protection and displacement assays. L. fermentum OK was evaluated for safety using ammonia production, biogenic amine production, hemolytic property, mucin degradation testing, antibiotic susceptibility, and whole genome sequencing (WGS). Based on this study, L. fermentum OK appears to be a safe and bioactive lactobacterial food ingredient, starter culture, and/or probiotic microorganism for human oral health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. CDC (2020) Basics of Oral Health. https://www.cdc.gov/oralhealth/basics/index.html Accessed 01 Sep 2020

  2. Kassebaum N, Smith A, Bernabé E, Fleming T, Reynolds A, Vos T, Murray C, Marcenes W, Collaborators GOH (2017) Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: a systematic analysis for the global burden of diseases, injuries, and risk factors. J Dent Res 96(4):380–387. https://doi.org/10.1177/0022034517693566

    Article  CAS  PubMed  Google Scholar 

  3. WHO (2020) Oral health. https://www.who.int/health-topics/oral-health#tab=tab_1 Accessed 01 Sep 2020

  4. Banas JA (2004) Virulence properties of Streptococcus mutans. Front Biosci 9(10):1267–1277. https://doi.org/10.2741/1305

    Article  CAS  PubMed  Google Scholar 

  5. Kuramitsu HK (2006) The virulence properties of Streptococcus mutans Gram Positive Pathogens 340–346 https://doi.org/10.1128/9781555816513.ch28

  6. Peres MA, Macpherson LMD, Weyant RJ et al (2019) Oral diseases: a global public health challenge. Lancet 394(10194):249–260. https://doi.org/10.1016/S0140-6736(19)31146-8

    Article  PubMed  Google Scholar 

  7. Kim ST, Kim YI (2018) National Health Insurance Statistical Yearbook. Health Insurance Review & Assessment Service, National Health Insurance Service, Korea

    Google Scholar 

  8. Petersen PE, Ogawa H (2012) The global burden of periodontal disease: towards integration with chronic disease prevention and control. Periodontol 60(1):15–39. https://doi.org/10.1111/j.1600-0757.2011.00425.x

    Article  Google Scholar 

  9. Bartold PM, Van Dyke TE (2013) Periodontitis: a host-mediated disruption of microbial homeostasis. Unlearning learned concepts Periodontol 62(1):203–217. https://doi.org/10.1111/j.1600-0757.2012.00450.x

    Article  Google Scholar 

  10. Apatzidou DA, Kinane DF (2010) Nonsurgical mechanical treatment strategies for periodontal disease. Dent Clin 54(1):1–12. https://doi.org/10.1016/j.cden.2009.08.006

    Article  Google Scholar 

  11. Winkelhoff AJV, Rams TE, Slots J (1996) Systemic antibiotic therapy in periodontics. Periodontol 10(1):45–78. https://doi.org/10.1111/j.1600-0757.1996.tb00068.x

    Article  Google Scholar 

  12. Haukioja A, Yli-Knuuttila H, Loimaranta V, Kari K, Ouwehand A, Meurman JH, Tenovuo J (2006) Oral adhesion and survival of probiotic and other lactobacilli and bifidobacteria in vitro. Oral Microbiol Immunol 21(5):326–332. https://doi.org/10.1111/j.1399-302X.2006.00299.x

    Article  CAS  PubMed  Google Scholar 

  13. Islam B, Khan SN, Khan AU (2007) Dental caries: from infection to prevention. Med Sci Monit 13(11):RA196–RA203. https://www.medscimonit.com/fulltxt.php?ICID=512939

  14. Daboor SM, Masood FSS, Al-Azab MS, Nori EE (2015) A review on streptococcus mutans with its diseases dental caries, dental plaque and endocarditis. Indian J Microbiol Res 2(2):76–82

    Google Scholar 

  15. Fujita K, Matsumoto-Nakano M, Inagaki S, Ooshima T (2007) Biological functions of glucan-binding protein B of Streptococcus mutans. Oral Microbiol Immunol 22(5):289–292. https://doi.org/10.1111/j.1399-302x.2007.00351.x

    Article  CAS  PubMed  Google Scholar 

  16. Banavar Ravi S, Nirupad S, Chippagiri P, Pandurangappa R (2017) Antibacterial effects of natural herbal extracts on streptococcus mutans: can they be potential additives in dentifrices? Int J Dent. https://doi.org/10.1155/2017/4921614

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hickl J, Argyropoulou A, Sakavitsi ME, Halabalaki M, Al-Ahmad A, Hellwig E et al (2018) Mediterranean herb extracts inhibit microbial growth of representative oral microorganisms and biofilm formation of Streptococcus mutans. PLoS ONE 13(12):e0207574. https://doi.org/10.1371/journal.pone.0207574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cho YJ (2000) Isolation of 3-Galloylprocyanidin B3, a glucosyltransferase inhibitor from the Korean Green Tea Leaves. J Appl Biol Chem 43(4):273–276

    CAS  Google Scholar 

  19. Hayes C (2001) The effect of non-cariogenic sweeteners on the prevention of dental caries: a review of the evidence. J Dent Educ 65(10):1106–1109. https://doi.org/10.1002/j.0022-0337.2001.65.10.tb03457.x

    Article  CAS  PubMed  Google Scholar 

  20. Oh JS (2005) Isolation and clinical application of lactic acid bacteria inhibiting halitosis. Dissertation, University Chonnam

  21. Hatakka K, Ahola AJ, Yli-Knuuttila H, Richardson M, Poussa T, Meurman JH, Korpela R (2007) Probiotics reduce the prevalence of oral Candida in the elderly—a randomized controlled trial. J Dent Res 86(2):125–130. https://doi.org/10.1177/154405910708600204

    Article  CAS  PubMed  Google Scholar 

  22. Meurman JH, Stamatova I (2007) Probiotics: contributions to oral health. Oral Dis 13(5):443–451. https://doi.org/10.1111/j.1601-0825.2007.01386.x

    Article  CAS  PubMed  Google Scholar 

  23. MarketsandMarkets (2018) Prebiotic ingredients market by type (oligosaccharides, inulin, and polydextrose), application (food & beverages, dietary supplements, and animal feed), source (roots, grains, and vegetables), and Region - Global Forecast to 2023. https://www.marketsandmarkets.com/Market-Reports/prebioticsingredients-market-219677001 Accessed 16 Jan 2020

  24. Jain P, Sharma P (2012) Probiotics and their efficacy in improving oral health: a review. J Appl Pharm Sci 2(11):151–163. https://doi.org/10.7324/JAPS.2012.21128

    Article  Google Scholar 

  25. Sohn YW (2016) Guidelines for standardization for quality of Lactobacillus products. NIFDS, Korea

    Google Scholar 

  26. FAO, WHO, (2002) Guidelines for the evaluation of probiotics in food. FAOUN & WHO, London, Ontario, Canada

    Google Scholar 

  27. Eschenbach DA, Davick PR, Williams BL, Klebanoff SJ, Young-Smith K, Critchlow C, Holmes KK (1989) Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. J Clin Microbiol 27(2):251–256. https://doi.org/10.1128/jcm.27.2.251-256.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Spencer JFT, Spencer ALRd (2004) Public health microbiology: Methods and Protocols (Methods in Molecular Biology). Humana Press, India

    Book  Google Scholar 

  29. Handley PS, Harty DW, Wyatt JE, Brown CR, Doran JP, Gibbs AC (1987) A comparison of the adhesion, coaggregation and cell-surface hydrophobicity properties of fibrillar and fimbriate strains of Streptococcus salivarius. Microbiol 133(11):3207–3217. https://doi.org/10.1099/00221287-133-11-3207

    Article  CAS  Google Scholar 

  30. Yu SH, Kwak SH, Nguyen TTH, Seo YS, Song C, Mok IK, Kim D (2018) Decrease of insoluble glucan formation in Streptococcus mutans by co-cultivation with Enterococcus faecium T7 and glucanase addition. Biotechnol Lett 40(2):375–381. https://doi.org/10.1007/s10529-017-2478-z

    Article  CAS  PubMed  Google Scholar 

  31. Ren D, Li C, Qin Y, Yin R, Li X, Tian M, Du S, Guo H, Liu C, Zhu N (2012) Inhibition of Staphylococcus aureus adherence to Caco-2 cells by lactobacilli and cell surface properties that influence attachment. Anaerobe 18(5):508–515. https://doi.org/10.1016/j.anaerobe.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  32. Chaney AL, Marbach EP (1962) Modified reagents for determination of urea and ammonia. Clin Chem 8(2):130–132. https://doi.org/10.1093/clinchem/8.2.130

    Article  CAS  PubMed  Google Scholar 

  33. Kim M, Ku S, Kim S, Lee H, Jin H, Kang S, Li R, Johnston T, Park M, Ji G (2018) Safety Evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI. Int J Mol Sci 19(5):1422. https://doi.org/10.3390/ijms19051422

    Article  CAS  PubMed Central  Google Scholar 

  34. Borriello S, Hammes W, Holzapfel W, Marteau P, Schrezenmeir J, Vaara M, Valtonen V (2003) Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis 36(6):775–780. https://doi.org/10.1086/368080

    Article  CAS  PubMed  Google Scholar 

  35. Ammor MS, Flórez AB, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24(6):559–570. https://doi.org/10.1016/j.fm.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  36. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32(suppl_1):D277–D280. https://doi.org/10.1093/nar/gkh063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42(D1):D206–D214. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  PubMed  Google Scholar 

  38. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4(1):41. https://doi.org/10.1186/1471-2105-4-41

    Article  PubMed  PubMed Central  Google Scholar 

  39. Watanabe K, Harayama S (2001) SWISS-PROT: the curated protein sequence database on Internet. Tanpakushitsu Kakusan Koso 46(1):80

    CAS  PubMed  Google Scholar 

  40. Burton J, Chilcott C, Tagg J (2005) The rationale and potential for the reduction of oral malodour using Streptococcus salivarius probiotics. Oral Dis 11:29–31. https://doi.org/10.1111/j.1601-0825.2005.01084.x

    Article  PubMed  Google Scholar 

  41. Fuochi V, Li Volti G, FurneriP, M (2017) Probiotic properties of Lactobacillus fermentum strains isolated from human oral samples and description of their antibacterial activity. Curr Pharm Biotechnol 18(2):138–149. https://doi.org/10.2174/1389201017666161229153530

    Article  CAS  PubMed  Google Scholar 

  42. Caglar E, Kargul B, Tanboga I (2005) Bacteriotherapy and probiotics’ role on oral health. Oral Dis 11(3):131–137. https://doi.org/10.1111/j.1601-0825.2005.01109.x

    Article  CAS  PubMed  Google Scholar 

  43. Teanpaisan R, Dahle´n G (2006) Use of polymerase chain reaction techniques and sodium dodecyl sulfate-polyacrylamide gel electrophoresis for differentiation of oral Lactobacillus species. Oral Microbiol Immunol 21(2):79–83. https://doi.org/10.1111/j.1399-302x.2006.00259.x

    Article  CAS  PubMed  Google Scholar 

  44. Wannun P, Piwat S, Teanpaisan R (2014) Purification and characterization of bacteriocin produced by oral Lactobacillus paracasei SD1. Anaerobe 27:17–21. https://doi.org/10.1016/j.anaerobe.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  45. Wannun P, Piwat S, Teanpaisan R (2016) Purification, characterization, and optimum conditions of fermencin SD11, a bacteriocin produced by human orally Lactobacillus fermentum SD11. Appl Biochem Biotechnol 179(4):572–582. https://doi.org/10.1007/s12010-016-2014-y

    Article  CAS  PubMed  Google Scholar 

  46. Teughels W, Van Essche M, Sliepen I (2000) Quirynen M (2008) Probiotics and oral healthcare. Periodontol 48(1):111–147. https://doi.org/10.1111/j.1600-0757.2008.00254.x

    Article  Google Scholar 

  47. Anuradha S, Rajeshwari K (2005) Probiotics in health and disease. J Indian Acad Clin Med 6(1):67–72

    Google Scholar 

  48. Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100(6):1171–1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x

    Article  CAS  PubMed  Google Scholar 

  49. Chen LJ, Tsai HT, Chen WJ, Hsieh CY, Wang PC, Chen CS, Wang L, Yang CC (2012) In vitro antagonistic growth effects of Lactobacillus fermentum and Lactobacillus salivarius and their fermentative broth on periodontal pathogens. Braz J Microbiol 43(4):1376–1384. https://doi.org/10.1590/S1517-83822012000400019

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kang MS, Kim BG, Chung J, Lee HC, Oh JS (2006) Inhibitory effect of Weissella cibaria isolates on the production of volatile sulphur compounds. J Clin Periodontol 33(3):226–232. https://doi.org/10.1111/j.1600-051X.2006.00893.x

    Article  CAS  PubMed  Google Scholar 

  51. Gao Z, Daliri EBM, Wang J, Liu D, Chen S, Ye X, Ding T (2019) Inhibitory effect of lactic acid bacteria on foodborne pathogens: a review. J Food Prot 82(3):441–453. https://doi.org/10.4315/0362-028X.JFP-18-303

    Article  CAS  PubMed  Google Scholar 

  52. Otero MC, Nader-Macías ME (2006) Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim Reprod Sci 96(1–2):35–46. https://doi.org/10.1016/j.anireprosci.2005.11.004

    Article  CAS  PubMed  Google Scholar 

  53. Shokri D, Khorasgani MR, Mohkam M, Fatemi SM, Ghasemi Y, Taheri-Kafrani A (2018) The inhibition effect of lactobacilli against growth and biofilm formation of Pseudomonas aeruginosa. Probiotics Antimicrob Proteins 10(1):34–42. https://doi.org/10.1007/s12602-017-9267-9

    Article  CAS  PubMed  Google Scholar 

  54. Sabir F, Beyatli Y, Cokmus C, Onal-Darilmaz D (2010) Assessment of potential probiotic properties of Lactobacillus spp., Lactococcus spp., and Pediococcus spp. strains isolated from kefir. J Food Sci 75(9):568–573. https://doi.org/10.1111/j.1750-3841.2010.01855.x

    Article  CAS  Google Scholar 

  55. Ito A, Sato Y, Kudo S, Sato S, Nakajima H, Toba T (2003) The screening of hydrogen peroxide-producing lactic acid bacteria and their application to inactivating psychrotrophic food-borne pathogens. Curr Microbiol 47(3):0231–0236. https://doi.org/10.1007/s00284-002-3993-1

    Article  CAS  Google Scholar 

  56. Pridmore RD, Pittet AC, Praplan F, Cavadini C (2008) Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiol Lett 283(2):210–215. https://doi.org/10.1111/j.1574-6968.2008.01176.x

    Article  CAS  PubMed  Google Scholar 

  57. Van der Hoeven J, Camp P (1993) Mixed continuous cultures of Streptococcus mutans with Streptococcus sanguis or with Streptococcus oralis as a model to study the ecological effects of the lactoperoxidase system. Caries Res 27(1):26–30. https://doi.org/10.1159/000261511

    Article  PubMed  Google Scholar 

  58. Kang DK, Oh HK, Ham JS, Kim JG, Yoon CH, Ahn YT, Kim HU (2005) Identification and characterization of hydrogen peroxide-generating Lactobacillus fermentum CS12-1. Asianaustralasian J Anim Sci 18(1):90–95. https://doi.org/10.5713/ajas.2005.90

    Article  CAS  Google Scholar 

  59. Kang MS, Oh JS, Lee HC, Lim HS, Lee SW, Yang KH, Choi NK, Kim SM (2011) Inhibitory effect of Lactobacillus reuteri on periodontopathic and cariogenic bacteria. J Microbiol 49(2):193–199. https://doi.org/10.1007/s12275-011-0252-9

    Article  CAS  PubMed  Google Scholar 

  60. Redanz S, Cheng X, Giacaman RA, Pfeifer CS, Merritt J, Kreth J (2018) Live and let die: hydrogen peroxide production by the commensal flora and its role in maintaining a symbiotic microbiome. Mol Oral Microbiol 33(5):337–352. https://doi.org/10.1111/omi.12231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ihalin R, Loimaranta V, Lenander-Lumikari M, Tenovuo J (1998) The effects of different (pseudo)halide substrates on peroxidase mediated killing of Actinobacillus actinomycetemcomitans. J Periodontol Res 33(7):421–427. https://doi.org/10.1111/j.1600-0765.1998.tb02338.x

    Article  CAS  Google Scholar 

  62. Ihalin R, Loimaranta V, Lenander-Lumikari M, Tenovuo J (2001) The sensitivity of Porphyromonas gingivalis and Fusobacterium nucleatum to different (pseudo)halide-peroxidase combinations compared with mutans streptococci. J Med Microbiol 50(1):42–48. https://doi.org/10.1099/0022-1317-50-1-42

    Article  CAS  PubMed  Google Scholar 

  63. Willcox M, Patrikakis M, Harty D, Loo C, Knox K (1993) Coaggregation of oral lactobacilli with streptococci from the oral cavity. Oral Microbiol Immunol 8(5):319–321. https://doi.org/10.1111/j.1399-302X.1993.tb00581.x

    Article  CAS  PubMed  Google Scholar 

  64. Twetman L, Larsen U, Fiehn NE, Stecksén-Blicks C, Twetman S (2009) Coaggregation between probiotic bacteria and caries-associated strains: an in vitro study. Acta Odontol Scand 67(5):284–288. https://doi.org/10.1080/00016350902984237

    Article  PubMed  Google Scholar 

  65. Sakamoto M, Umeda M, Benno Y (2005) Molecular analysis of human oral microbiota. J Periodontal Res 40(3):277–285. https://doi.org/10.1111/j.1600-0765.2005.00793.x

    Article  CAS  PubMed  Google Scholar 

  66. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ (2002) Communication among oral bacteria. Microbiol Mol Biol Rev 66(3):486–505. https://doi.org/10.1128/MMBR.66.3.486-505.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Comelli EM, Guggenheim B, Stingele F, Neeser JR (2002) Selection of dairy bacterial strains as probiotics for oral health. Eur J Oral Sci 110(3):218–224. https://doi.org/10.1034/j.1600-0447.2002.21216.x

    Article  PubMed  Google Scholar 

  68. Kang MS, Na HS, Oh JS (2005) Coaggregation ability of Weissella cibaria isolates with Fusobacterium nucleatum and their adhesiveness to epithelial cells. FEMS Microbiol Lett 253(2):323–329. https://doi.org/10.1016/j.femsle.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  69. Koo H, Rosalen PL, Cury JA, Park YK, Bowen WH (2002) Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrob Agents Chemother 46(5):1302–1309. https://doi.org/10.1128/AAC.46.5.1302-1309.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nishimura J, Saito T, Yoneyama H, Bai LL, Okumura K, Isogai E (2012) Biofilm formation by Streptococcus mutans and related bacteria. Adv Microbiol 2(03):208. https://doi.org/10.4236/aim.2012.23025

    Article  CAS  Google Scholar 

  71. Tonetti MS (2013) Periodontitis and systemic diseases: proceedings of a workshop jointly held by the european federation of periodontology and american academy of periodontology; 11–14 November 2012, Segovia, Spain. Am Acad Periodontol

  72. Chung J, Yim SY, Oh JS (2000) Effect of Lactococcus lactis 1370 on the formation of artificial plaque. J Korean Soc Microbiol 35(1):77–85

    Google Scholar 

  73. Bowen WH, Koo HJCR (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45(1):69–86. https://doi.org/10.1159/000324598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fraunhofer ME, Geissler AJ, Wefers D, Bunzel M, Jakob F, Vogel RF (2018) Characterization of β-glucan formation by Lactobacillus brevis TMW 1.2112 isolated from slimy spoiled beer. Int J Biol Macromol 107:874–881. https://doi.org/10.1016/j.ijbiomac.2017.09.063

    Article  CAS  PubMed  Google Scholar 

  75. Kearney N, Stack HM, Tobin JT, Chaurin V, Fenelon MA, Fitzgerald GF, Ross RP, Stanton C (2011) Lactobacillus paracasei NFBC 338 producing recombinant beta-glucan positively influences the functional properties of yoghurt. Int Dairy J 21(8):561–567. https://doi.org/10.1016/j.idairyj.2011.03.002

    Article  CAS  Google Scholar 

  76. Kralj S, van Geel-Schutten G, Rahaoui H, Leer R, Faber E, Van Der Maarel M, Dijkhuizen L (2002) Molecular characterization of a novel glucosyltransferase from Lactobacillus reuteri strain 121 synthesizing a unique, highly branched glucan with α-(1→ 4) and α-(1→ 6) glucosidic bonds. Appl Environ Microbiol 68(9):4283–4291. https://doi.org/10.1128/AEM.68.9.4283-4291.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koh CM, Kim SK (1987) Correlative relationship between proteinase, phospholipase activity and adherence to buccal epithelial cells of experimental strains of Candida albicans. J Korean Soc Microbiol 22(4):403–411

    Google Scholar 

  78. Han TW, Shi W, Huang GTJ, Haake SK, Park NH, Kuramitsu H, Genco RJ (2000) Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect Immun 68(6):3140–3146. https://doi.org/10.1128/IAI.68.6.3140-3146.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. García-Ruiz A, de Llano DG, Esteban-Fernández A, Requena T, Bartolomé B, Moreno-Arribas MV (2014) Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol 44:220–225. https://doi.org/10.1016/j.fm.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  80. Abedi D, Feizizadeh S, Akbari V, Jafarian-Dehkordi A (2013) In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp bulgaricus on Escherichia coli. Res Pharm Sci 8(4):260

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Igai K, Itakura M, Nishijima S, Tsurumaru H, Suda W, Tsutaya T, Tomitsuka E, Tadokoro K, Baba J, Odani S (2016) Nitrogen fixation and nifH diversity in human gut microbiota. Scientific Rep 6:31942. https://doi.org/10.1038/srep31942

    Article  CAS  Google Scholar 

  82. Smith EA, Macfarlane GT (1997) Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microb Ecol 33(3):180–188. https://doi.org/10.1007/s002489900020

    Article  CAS  PubMed  Google Scholar 

  83. Önal A (2007) A review: Current analytical methods for the determination of biogenic amines in foods. Food Chem 103(4):1475–1486. https://doi.org/10.1016/j.foodchem.2006.08.028

    Article  CAS  Google Scholar 

  84. Ku S (2016) Finding and producing probiotic glycosylases for the biocatalysis of ginsenosides: a mini review. Molecules 21(5):645. https://doi.org/10.3390/molecules21050645

    Article  CAS  PubMed Central  Google Scholar 

  85. Goldstein EJ, Tyrrell KL, Citron DM (2015) Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin Infect Dis 60(suppl_2):S98–S107. https://doi.org/10.1093/cid/civ072

    Article  CAS  PubMed  Google Scholar 

  86. Gómez NC, Ramiro JM, Quecan BX, de Melo Franco BD (2016) Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157: H7 biofilms formation. Front Microbiol 7:863. https://doi.org/10.3389/fmicb.2016.00863

    Article  PubMed  PubMed Central  Google Scholar 

  87. Levy GN, Aminoff D (1980) Purification and properties of alpha-N-acetylgalactosaminidase from Clostridium perfringens. J Biol Chem 255(24):11737–11742

    Article  CAS  Google Scholar 

  88. Prizont R (1982) Degradation of intestinal glycoproteins by pathogenic Shigella flexneri. Infect Immun 36(2):615–620. https://doi.org/10.1128/iai.36.2.615-620.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Slomiany B, Murty V, Piotrowski J, Liau Y, Sundaram P, Slomiany A (1992) Glycosulfatase activity of Helicobacter pylori toward gastric mucin. Biochem Biophys Res Commun 183(2):506–513. https://doi.org/10.1016/0006-291X(92)90511-I

    Article  CAS  PubMed  Google Scholar 

  90. Tailford LE, Crost EH, Kavanaugh D, Juge N (2015) Mucin glycan foraging in the human gut microbiome. Front Genet 6:81. https://doi.org/10.3389/fgene.2015.00081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. De Groote MA, Frank DN, Dowell E, Glode MP, Pace NR (2005) Lactobacillus rhamnosus GG bacteremia associated with probiotic use in a child with short gut syndrome. Pediatr Infect Dis J 24(3):278–280. https://doi.org/10.1097/01.inf.0000154588.79356.e6

    Article  PubMed  Google Scholar 

  92. Liong MT (2008) Safety of probiotics: translocation and infection. Nutr Rev 66(4):192–202. https://doi.org/10.1111/j.1753-4887.2008.00024.x

    Article  Google Scholar 

  93. Ruas-Madiedo P, Gueimonde M, Fernández-García M, Clara G, Margolles A (2008) Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol 74(6):1936–1940. https://doi.org/10.1128/AEM.02509-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sicard JF, Le Bihan G, Vogeleer P, Jacques M, Harel J (2017) Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol 7:387. https://doi.org/10.3389/fcimb.2017.00387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Halvorsen R, Berstad A, Lassen J, Midtvedt T, Narvhus J (2009) The Use of Probiotics for Patients in Hospitals: A Benefit and Risk Assessment. Opinion of the Steering Committee of the Norwegian Scientific Committee for Food Safety. VKM Rep, Norway

  96. Additives EPo, Feed PoSuiA (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10(6):2740. https://doi.org/10.2903/j.efsa.2012.2740

    Article  CAS  Google Scholar 

  97. Georgieva R, Yocheva L, Tserovska L, Zhelezova G, Stefanova N, Atanasova A, Danguleva A, Ivanova G, Karapetkov N, Rumyan N (2015) Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnol Biotechnol Equip 29(1):84–91. https://doi.org/10.1080/13102818.2014.987450

    Article  CAS  PubMed  Google Scholar 

  98. Cárdenas N, Laiño JE, Delgado S, Jiménez E, Del Valle MJ, De Giori GS, Sesma F, Mayo B, Fernández L, LeBlanc JG (2015) Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. Appl Microbiol Biotechnol 99(10):4343–4353. https://doi.org/10.1007/s00253-015-6429-0

    Article  CAS  PubMed  Google Scholar 

  99. Connell SR, Tracz DM, Nierhaus KH, Taylor DE (2003) Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47(12):3675–3681. https://doi.org/10.1128/aac.47.12.3675-3681.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. DeLong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. Syst Biol 50(4):470–478. https://doi.org/10.1080/106351501750435040

    Article  CAS  PubMed  Google Scholar 

  101. Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F, Perez-Perez G, Blaser MJ, Relman DA (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci 103(3):732–737. https://doi.org/10.1073/pnas.0506655103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Azizpour K, Kessel KV, Oudega R, Rutten F (2017) The effect of probiotic lactic acid bacteria (LAB) strains on the platelet activation: a flow cytometry-based study. J Probiotics Health 5(3):1–5. https://doi.org/10.4172/2329-8901.1000185

    Article  Google Scholar 

  103. Piddock LJ (2006) Multidrug-resistance efflux pumps? not just for resistance. Nat Rev Microbiol 4(8):629–636. https://doi.org/10.1038/nrmicro1464

    Article  CAS  PubMed  Google Scholar 

  104. McDermott PF, Zhao S, Wagner DD, Simjee S, Walker RD, White DG (2002) The food safety perspective of antibiotic resistance. Animal biotechnol 13(1):71–84. https://doi.org/10.1081/ABIO-120005771

    Article  CAS  Google Scholar 

  105. Danielsen M, Wind A (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol 82(1):1–11. https://doi.org/10.1016/S0168-1605(02)00254-4

    Article  CAS  PubMed  Google Scholar 

  106. Monteagudo-Mera A, Rodríguez-Aparicio L, Rúa J, Martínez-Blanco H, Navasa N, García-Armesto MR, Ferrero MÁ (2012) In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. J Functi Foods 4(2):531–541. https://doi.org/10.1016/j.jff.2012.02.014

    Article  CAS  Google Scholar 

  107. Ivanova P, Peykov S, Dimitrova A, Dimov S (2008) Molecular typing by genus-specific PCR and RAPD profiling of diverse Lactobacillus delbrueckii strains isolated from cow, sheep and buffalo yoghurts. Biotechnol Biotechnol Equip 22(2):748–753. https://doi.org/10.1080/13102818.2008.10817545

    Article  CAS  Google Scholar 

  108. Cogulu D, Uzel A, Oncag O, Eronat C (2008) PCR-based identification of selected pathogens associated with endodontic infections in deciduous and permanent teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(3):443–449. https://doi.org/10.1016/j.tripleo.2008.03.004

    Article  PubMed  Google Scholar 

  109. Lee SJ, Lee SH, Choi BK, Kim JW, Kim YJ, Kim CC (2011) The influence of Lactobacillus rhamnosus GG on the binding ability of Streptococcus mutans. J Korean Acad Pediatr Dent 38(2):155–160. https://doi.org/10.5933/jkapd.2011.38.2.155

    Article  Google Scholar 

Download references

Funding

This research was financially supported by the Gang-neung Science & Industry Promotion Agency (GSIPA), Korea, under the “Regional development investment agreement pilot project”. This work was also supported by a Faculty Research and Creative Activity Committee (FRCAC) grant (No. 221745) funded by Middle Tennessee State University in the U.S.

Author information

Authors and Affiliations

Authors

Contributions

Soyon Mann designed the experiment under the supervision of Geun Eog Ji, Myeong Soo Park, and Seockmo Ku. Soyon Mann performed microbial experiments. Soyon Mann, Geun Eog Ji, Myeong Soo Park, Keum Taek Hwang, and Seockmo Ku performed the literature research and analyzed data. Tony V. Johnston, Keum Taek Hwang, and Seockmo Ku edited and revised the manuscript. Seockmo Ku and Tony V. Johnston participated this work based on a non-disclosure research agreement between Middle Tennessee State University and BIFIDO Co., Ltd. All authors discussed drafts and approved the final manuscript for publication.

Corresponding authors

Correspondence to Keum Taek Hwang or Seockmo Ku.

Ethics declarations

Competing Interests

Soyon Mann, Tony V. Johnston, Keum Taek Hwang and Seockmo Ku declare no conflicts of interest. Myeong Soo Park and Geun Eog Ji are directly employed by BIFIDO Co., Ltd., and they hold BIFIDO Co., Ltd. stocks as a CTO and CEO, respectively.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mann, S., Park, M.S., Johnston, T.V. et al. Isolation, Characterization and Biosafety Evaluation of Lactobacillus Fermentum OK with Potential Oral Probiotic Properties. Probiotics & Antimicro. Prot. 13, 1363–1386 (2021). https://doi.org/10.1007/s12602-021-09761-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09761-z

Keywords

Navigation