Skip to main content
Log in

Characterization of Riboflavin-Producing Strains of Lactobacillus plantarum as Potential Probiotic Candidate through in vitro Assessment and Principal Component Analysis

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) are known for their probiotic properties, but only a few strains produce riboflavin. We evaluated the probiotic properties of four riboflavin-producing strains of Lactobacillus plantarum (BBC33, BBC32A, BIF43, and BBC32B) by using in vitro assessment and carried out multivariate principal component analysis (PCA) to select the best strain. Safety, antioxidant, and exopolysaccharide-producing properties were also studied. Lact. plantarum BBC33 showed better probiotic potential, followed by strain BIF43. Lact. plantarum BBC32A degraded mucin and excluded as a potential probiotic candidate. Lact. plantarum BIF43, BBC33, and BBC32A tolerated simulated gastrointestinal conditions and their overnight cell-free culture supernatants (CFSs, pH 4.0–4.3) inhibited the growth of Escherichia coli AF10, Salmonella Typhi MTCC98, Bacillus cereus NCDC250, and Pseudomonas aeruginosa NCDC105. Lact. plantarum BIF43 and BBC33 did not degrade mucin, adhered to human epithelial colorectal adenocarcinoma Caco-2 cells (22–25%), and aggregated with indicators (30–50%). Moreover, both were non-hemolytic and sensitive to most antibiotics tested. Of the two selected strains, BIF43 showed better exopolysaccharides (EPS) producing phenotype. The CFSs of all strains showed high (85–93%) 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. PCA confirmed the results obtained from in vitro probiotic experiments and supported the selection of Lact. plantarum BIF33 and BBC43, as potential probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Joint FAO/WHO (2002) Working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada, 30

  2. European Food Safety Authority (EFSA) (2007) Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA-Opinion of the Scientific Committee. EFSA J 5(12):587, 1–16. https://www.efsa.europa.eu/en/aboutefsa

  3. Saini K, Tomar SK, Sangwan V, Bhushan B (2014) Evaluation of lactobacilli from human sources for uptake and accumulation of selenium. Biol Trace Elem Res 160(3):433–436. https://doi.org/10.1007/s12011-014-0065-x

    Article  CAS  PubMed  Google Scholar 

  4. O’Toole PW, Marchesi JR, Hill C (2017) Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol 2(5):1–6. https://doi.org/10.1038/nmicrobiol.2017.57

    Article  CAS  Google Scholar 

  5. Bhushan B, Tomar SK, Mandal S (2016) Phenotypic and genotypic screening of human-originated lactobacilli for vitamin B12 production potential: process validation by micro-assay and UFLC. Appl Microbiol Biotechnol 100(15):6791–6803. https://doi.org/10.1007/s00253-016-7639-9

    Article  CAS  PubMed  Google Scholar 

  6. Bhushan B, Tomar SK, Chauhan A (2017) Techno-functional differentiation of two vitamin B12 producing Lactobacillus plantarum strains: an elucidation for diverse future use. Appl Microbiol Biotechnol 101(2):697–709. https://doi.org/10.1007/s00253-016-7903-z

    Article  CAS  PubMed  Google Scholar 

  7. Bhushan B, Kumkum CR, Kumari M, Ahire JJ, Dicks LM, Mishra V (2020) Soymilk bio-enrichment by indigenously isolated riboflavin-producing strains of Lactobacillus plantarum. LWT-Food Sci Technol 119:108871. https://doi.org/10.1016/j.lwt.2019.108871

    Article  CAS  Google Scholar 

  8. Ganguly NK, Bhattacharya SK, Sesikeran B, Nair GB, Ramakrishna BS, Sachdev HP, Batish VK, Kanagasabapathy AS, Muthuswamy V, Kathuria SC, Katoch VM (2011) ICMR-DBT guidelines for evaluation of probiotics in food. Ind J Med Res 134(1):22–25

    Google Scholar 

  9. Mishra V, Prasad DN (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J Food Microbiol 103(1):109–115. https://doi.org/10.1016/j.ijfoodmicro.2004.10.047

    Article  PubMed  Google Scholar 

  10. Papadimitriou K, Zoumpopoulou G, Foligne B, Alexandraki V, Kazou M, Pot B, Tsakalidou E (2015) Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 6:58. https://doi.org/10.3389/fmicb.2015.00058

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hernandez-Alcantara AM, Wacher C, Llamas MG, Lope P, Perez-Chabela ML (2018) Probiotic properties and stress response of thermotolerant lactic acid bacteria isolated from cooked meat products. LWT-Food Sci Technol 91:249–257. https://doi.org/10.1016/j.lwt.2017.12.063

    Article  CAS  Google Scholar 

  12. Gunyakti A, Asan-Ozusaglam M (2019) Lactobacillus gasseri from human milk with probiotic potential and some technological properties. LWT-Food Sci Technol 109:261–269. https://doi.org/10.1016/j.lwt.2019.04.043

    Article  CAS  Google Scholar 

  13. Food and Agriculture Organization, and World Health Organization (2006) Probiotics in food: health and nutritional properties and guidelines for evaluation. FAO. Available at http://www.fao.org/3/a-a0512e.pdf. Accessed 28 June 2020

  14. Campana R, van Hemert S, Baffone W (2017) Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog 9(1):12. https://doi.org/10.1186/s13099-017-0162-4

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sanders ME, Benson A, Lebeer S, Merenstein DJ, Klaenhammer TR (2018) Shared mechanisms among probiotic taxa: implications for general probiotic claims. Current Opin Biotechnol 49:207–216. https://doi.org/10.1016/j.copbio.2017.09.007

    Article  CAS  Google Scholar 

  16. Bautista-Gallego J, Arroyo-Lopez FN, Rantsiou K, Jimenez-Diaz R, Garrido-Fernandez A, Cocolin L (2013) Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Res Int 50(1):135–142. https://doi.org/10.1016/j.foodres.2012.10.004

    Article  CAS  Google Scholar 

  17. Ghosh D, Chattopadhyay P (2012) Application of principal component analysis (PCA) as a sensory assessment tool for fermented food products. J Food Sci Technol 49(3):328–334. https://doi.org/10.1007/s13197-011-0280-9

    Article  CAS  PubMed  Google Scholar 

  18. Sharma K, Pooranachithra M, Balamurugan K, Goel G (2019) Multivariate analysis of increase in life span of Caenorhabditis elegans through intestinal colonization by indigenous probiotic strains. Probiotics Antimicrob Proteins 11(3):865–873. https://doi.org/10.1007/s12602-018-9420-0

    Article  CAS  PubMed  Google Scholar 

  19. Pitino I, Randazzo CL, Cross KL, Parker ML, Bisignano C, Wickham MS, Mandalari G, Caggia C (2012) Survival of Lactobacillus rhamnosus strains inoculated in cheese matrix during simulated human digestion. Food Microbiol 31(1):57–63. https://doi.org/10.1016/j.fm.2012.02.013

    Article  CAS  PubMed  Google Scholar 

  20. Peres CM, Alves M, Hernandez-Mendoza A, Moreira L, Silva S, Bronze MR, Vilas-Boas L, Peres C, Malcata FX (2014) Novel isolates of lactobacilli from fermented Portuguese olive as potential probiotics. LWT-Food Sci Technol 59(1):234–246. https://doi.org/10.1016/j.lwt.2014.03.003

    Article  CAS  Google Scholar 

  21. Abe F, Muto M, Yaeshima T, Iwatsuki K, Aihara H, Ohashi Y, Fujisawa T (2010) Safety evaluation of probiotic bifidobacteria by analysis of mucin degradation activity and translocation ability. Anaerobe 16(2):131–136. https://doi.org/10.1016/j.anaerobe.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  22. Pelletier C, Bouley C, Cayuela C, Bouttier S, Bourlioux P, Bellon-Fontaine MN (1997) Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Appl Environ Microbiol 63(5):1725–1731 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168469/

    Article  CAS  Google Scholar 

  23. Garcia-Cayuela T, Korany AM, Bustos I, de Cadiñanos LPG, Requena T, Pelaez C, Martinez-Cuesta MC (2014) Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res Int 57:44–50. https://doi.org/10.1016/j.foodres.2014.01.010

    Article  CAS  Google Scholar 

  24. Shah C, Mokashe N, Mishra V (2016) Preparation, characterization and in vitro antioxidative potential of synbiotic fermented dairy products. J Food Sci Technol 53(4):1984–1992. https://doi.org/10.1007/s13197-016-2190-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fontana A, Falasconi I, Molinari P, Treu L, Basile A, Vezzi A, Campanaro S, Morelli L (2019) Genomic comparison of Lactobacillus helveticus strains highlights probiotic potentials. Front Microbiol 10:1380. https://doi.org/10.3389/fmicb.2019.01380

    Article  PubMed  PubMed Central  Google Scholar 

  26. Matuschek E, Brown DFJ, Kahlmeter G (2014) Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 20:O255–O266. https://doi.org/10.1111/1469-0691.12373

    Article  CAS  PubMed  Google Scholar 

  27. Clinical and Laboratory Standards Institute (2020) Performance standards for antimicrobial susceptibility testing. 30th ed. CSLI supplement M100.Wayne, PA. https://clsi.org/media/3481/m100ed30_sample.pdf

  28. Jollife IT (2002) Principal component analysis, 2nd edn. Springer-Verlag, New York https://goo.gl/SB86SR

    Google Scholar 

  29. Team R (2019) RStudio: integrated development environment for R. Boston, MA. https://support.rstudio.com/hc/en-us/articles/206212048-Citing-RStudio

  30. Cao Z, Pan H, Li S, Shi C, Wang S, Wang F, Ye P, Jia J, Ge C, Lin Q, Zhao Z (2019) In vitro evaluation of probiotic potential of lactic acid bacteria isolated from Yunnan De’ang pickled tea. Probiotics Antimicrob Proteins 11(1):103–112. https://doi.org/10.1007/s12602-018-9395-x

    Article  CAS  PubMed  Google Scholar 

  31. Mukherjee S, Singh AK, Adhikari MD, Ramesh A (2013) Quantitative appraisal of the probiotic attributes and in vitro adhesion potential of anti-listerial bacteriocin-producing lactic acid bacteria. Probiotics Antimicrob Proteins 5(2):99–109. https://doi.org/10.1007/s12602-013-9131-5

    Article  CAS  PubMed  Google Scholar 

  32. Mantovani FD, de Carla BM, de Souza CH, Aragon DC, de Santana EH, Pimentel TC, Aragon-Alegro LC (2020) Is there an impact of the dairy matrix on the survival of Lactobacillus casei Lc-1 during shelf life and simulated gastrointestinal conditions? J Sci Food Agri 100(1):32–37. https://doi.org/10.1002/jsfa.9988

    Article  CAS  Google Scholar 

  33. Panicker AS, Behare PV, Munjal K, Kumar S, Naru J, Singh S, Rawat P, Bathla S, Bhushan B, Jamwal M, Mohanty AK (2015) Differential proteome study of putative probiotic Lactobacillus fermentum BIF-19 strain in response to bile stress. J Proteins Proteomic 6(2):197–210 https://www.researchgate.net/publication/285143738

    Google Scholar 

  34. Willis CL, Cummings JH, Neale G, Gibson GR (1996) In vitro effects of mucin fermentation on the growth of human colonic sulphate-reducing bacteria. Anaerobe 2(2):117–122. https://doi.org/10.1006/anae.1996.0015

    Article  CAS  Google Scholar 

  35. Kotzamanidis C, Kourelis A, Litopoulou-Tzanetaki E, Tzanetakis N, Yiangou M (2010) Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains. Int J Food Microbiol 140(2–3):154–163. https://doi.org/10.1016/j.ijfoodmicro.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  36. Reid G, Cuperus PL, Bruce AW, van der Mei H, Tomeczek L, Khoury AH, Busscher HJ (1992) Comparison of contact angles and adhesion to hexadecane of urogenital, dairy, and poultry lactobacilli: effect of serial culture passages. Appl Environ Microbiol 58(5):1549–1553 https://europepmc.org/article/pmc/pmc195639

    Article  CAS  Google Scholar 

  37. Krausova G, Hyrslova I, Hynstova I (2019) In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation 5(4):100. https://doi.org/10.3390/fermentation5040100

    Article  CAS  Google Scholar 

  38. Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A (2019) Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol 103(16):6463–6472. https://doi.org/10.1007/s00253-019-09978-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dos Santos KM, de Matos CR, Salles HO, de Melo Franco BD, Arellano K, Holzapfel WH, Todorov SD (2020). Exploring beneficial/virulence properties of two dairy-related strains of Streptococcus infantarius subsp. infantarius. Probiotics Antimicrob proteins 1-18. https://doi.org/10.1007/s12602-020-09637-8

  40. Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31(6):438–442. https://doi.org/10.1046/j.1365-2672.2000.00845.x

    Article  PubMed  Google Scholar 

  41. Abushelaibi A, Al-Mahadin S, El-Tarabily K, Shah NP, Ayyash M (2017) Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT-Food Sci Technol 79:316–325. https://doi.org/10.1016/j.lwt.2017.01.041

    Article  CAS  Google Scholar 

  42. Trunk T, Khalil HS, Leo JC (2018) Bacterial auto-aggregation. AIMS Microbiol 4(1):140–164. https://doi.org/10.3934/microbiol.2018.1.140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang X, Wang W, Lv H, Zhang H, Liu Y, Zhang M, Wang Y, Tan Z (2020) Probiotic potential and wide-spectrum antimicrobial activity of lactic acid bacteria isolated from infant feces. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-020-09658-3

  44. de Souza BM, Borgonovi TF, Casarotti SN, Todorov SD, Penna AL (2019) Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarella cheese: probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. Probiotics Antimicrob Proteins 11(2):382–396. https://doi.org/10.1007/s12602-018-9406-y

    Article  CAS  PubMed  Google Scholar 

  45. Devi SM, Archer AC, Halami PM (2015) Screening, characterization and in vitro evaluation of probiotic properties among lactic acid bacteria through comparative analysis. Probiotics Antimicrob Proteins 7(3):181–192. https://doi.org/10.1007/s12602-015-9195-5

    Article  CAS  PubMed  Google Scholar 

  46. Chiocchetti GD, Monedero V, Zúñiga M, Vélez D, Devesa V (2020) In vitro evaluation of the protective role of Lactobacillus strains against inorganic arsenic toxicity. Probiotics Antimicrob Proteins 19:1–8. https://doi.org/10.1007/s12602-020-09639-6

    Article  CAS  Google Scholar 

  47. Jamuna M, Jeevaratnam K (2004) Isolation and characterization of lactobacilli from some traditional fermented foods and evaluation of the bacteriocins. J Gen Appl Microbiol 50(2):79–90. https://doi.org/10.2323/jgam.50.79

    Article  CAS  PubMed  Google Scholar 

  48. Garcia C, Rendueles M, Diaz M (2017) Microbial amensalism in Lactobacillus casei and Pseudomonas taetrolens mixed culture. Bioprocess Biosyst Eng 40(7):1111–1122. https://doi.org/10.1007/s00449-017-1773-3

    Article  CAS  PubMed  Google Scholar 

  49. De Keersmaecker SC, Verhoeven TL, Desair J, Marchal K, Vanderleyden J, Nagy I (2006) Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol Lett 259(1):89–96. https://doi.org/10.1111/j.1574-6968.2006.00250.x

    Article  CAS  PubMed  Google Scholar 

  50. Layus BI, Gerez CL, Rodriguez AV (2020) Antibacterial activity of Lactobacillus plantarum CRL759 against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Arabian J Sci Engineer 45:4503–4510. https://doi.org/10.1007/s13369-020-04491-w

    Article  CAS  Google Scholar 

  51. Ahire JJ, Mokashe NU, Patil HJ, Chaudhari BL (2013) Antioxidative potential of folate producing probiotic Lactobacillus helveticus CD6. J Food Sci Technol 50(1):26–34. https://doi.org/10.1007/s13197-011-0244-0

    Article  CAS  PubMed  Google Scholar 

  52. Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, Prajapati J (2015) Probiotics as potential antioxidants: a systematic review. J Agric Food Chem 63(14):3615–3626. https://doi.org/10.1021/jf506326t

    Article  CAS  PubMed  Google Scholar 

  53. Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. BBA-Gen Subjects 1830(5):3217–3266. https://doi.org/10.1016/j.bbagen.2012.09.018

    Article  CAS  Google Scholar 

  54. Levit R, de Giori GS, de LeBlanc ADM, LeBlanc JG (2018) Protective effect of the riboflavin-overproducing strain Lactobacillus plantarum CRL2130 on intestinal mucositis in mice. Nutrition 54:165–172. https://doi.org/10.1016/j.nut.2018.03.056

    Article  CAS  PubMed  Google Scholar 

  55. Bhat B, Bajaj BK (2018) Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1 isolated from kalarei. Bioresour Technol 254:264–267. https://doi.org/10.1016/j.biortech.2018.01.078

    Article  CAS  PubMed  Google Scholar 

  56. Ammor MS, Florez AB, van-Hoek AHAM, de los Reyes-Gavilan CG, HJM A, Margolles A, Mayo B (2008) Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J Mol Microbiol Biotechnol 14:6–15. https://doi.org/10.1159/000106077

    Article  CAS  PubMed  Google Scholar 

  57. Hummel AS, Hertel C, Holzapfel WH, Franz CM (2007) Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol 73(3):730–739. https://doi.org/10.1128/AEM.02105-06

    Article  CAS  PubMed  Google Scholar 

  58. Casarotti SN, Carneiro BM, Todorov SD, Nero LA, Rahal P, Penna AL (2017) In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Ann Microbiol 67(4):289–301. https://doi.org/10.1007/s13213-017-1258-2

    Article  CAS  Google Scholar 

  59. Thumu SC, Halami PM (2012) Acquired resistance to macrolide–lincosamide–streptogramin antibiotics in lactic acid bacteria of food origin. Ind J Microbiol 52(4):530–537. https://doi.org/10.1007/s12088-012-0296-5

    Article  CAS  Google Scholar 

  60. Zhang Z, Lv J, Pan L, Zhang Y (2018) Roles and applications of probiotic Lactobacillus strains. Appl Microbiol Biotechnol 102(19):8135–8143. https://doi.org/10.1007/s00253-018-9217-9

    Article  CAS  PubMed  Google Scholar 

  61. Barache N, Ladjouzi R, Belguesmia Y, Bendali F, Drider D (2020) Abundance of Lactobacillus plantarum strains with beneficial attributes in blackberries (Rubus sp.), fresh figs (Ficus carica), and prickly pears (Opuntia ficus-indica) grown and harvested in Algeria. Probiotics Antimicrob Proteins 24:1–10. https://doi.org/10.1007/s12602-020-09632-z

  62. Choudhary J, Dubey RC, Sengar G, Dheeman S (2019) Evaluation of probiotic potential and safety assessment of Lactobacillus pentosus MMP4 isolated from mare’s lactation. Probiotics Antimicrob Proteins 11(2):403–412. https://doi.org/10.1007/s12602-018-9431-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support of Dr. Rajiv Kapila, Principal Scientist, NDRI, Karnal for Caco-2 cell experiment, technical support of Mr. Rishi Bhatia in Microbiology lab, NIFTEM and Dr. Vikas, FBM Dept., NIFTEM for PCA analysis is acknowledged.

Funding

Department of Science and Technology, India [grant # DST/INT/South Africa/P-15/2016] supported this work under Indo-South African collaboration.

Author information

Authors and Affiliations

Authors

Contributions

BB contributed in study conception and design, acquisition of data, analysis and interpretation of data, drafting of manuscript, critical revision; SMS carried out acquisition and analysis of data; KNS and MK contributed in analysis and interpretation of data, critical revision; VM contributed to study conception and design, analysis and interpretation of data, drafting of manuscript, critical revision; LMTD contributed to study design, analysis and interpretation of data, critical revision.

Corresponding author

Correspondence to Vijendra Mishra.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest.

Ethics Approval

This study does not contain any work related with participation of humans and/or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhushan, B., Sakhare, S.M., Narayan, K.S. et al. Characterization of Riboflavin-Producing Strains of Lactobacillus plantarum as Potential Probiotic Candidate through in vitro Assessment and Principal Component Analysis. Probiotics & Antimicro. Prot. 13, 453–467 (2021). https://doi.org/10.1007/s12602-020-09696-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09696-x

Keywords

Navigation