Skip to main content

Advertisement

Log in

Plant Growth Enhancement, Disease Resistance, and Elemental Modulatory Effects of Plant Probiotic Endophytic Bacillus sp. Fcl1

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Endophytic bacteria have already been studied for their beneficial support to plants to manage both biotic and abiotic stress through an array of well-established mechanisms. They have either direct or indirect impact on mobilizing diverse nutrients and elements from soil to plants. However, detailed insight into the fine-tuning of plant elemental composition by associated microorganism is very limited. In this study, endophytic Bacillus Fcl1 characterized from the rhizome of Curcuma longa was found to have broad range of plant growth-promoting and biocontrol mechanisms. The organism was found to have indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase production properties along with nitrogen fixation. The Bacillus Fcl1 could also inhibit diverse phytopathogens as confirmed by dual culture and well diffusion. By LC-MS/MS analysis, chemical basis of its antifungal activity has been proved to be due to the production of iturin A and a blend of surfactin compounds. Moreover, the organism was found to induce both plant growth and disease resistance in vivo in model plant system. Because of these experimentally demonstrated multiple plant probiotic features, Bacillus Fcl1 was selected as a candidate organism to study its role in modulation of plant elemental composition. ICP-MS analysis of Bacillus Fcl1-treated plants provided insight into relation of bacterial interaction with elemental composition of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int 2015:1–9. https://doi.org/10.1155/2015/473050

    Article  CAS  Google Scholar 

  2. Jimtha JC, Smitha PV, Anisha C, Deepthi T, Meekha G, Radhakrishnan EK, Gayatri GP, Remakanthan A (2014) Isolation of endophytic bacteria from embryogenic suspension culture of banana and assessment of their plant growth promoting properties. Plant Cell Tissue and Organ Cult 118:57–66. https://doi.org/10.1007/s11240-014-0461-0

    Article  Google Scholar 

  3. Xia Y, DeBolt S, Dreyer J, Scott D, Williams MA (2015) Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00490

  4. Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00172

  5. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502. https://doi.org/10.1128/mmbr.67.4.491-502.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gasser I, Cardinale M, Müller H, Heller S, Eberl L, Lindenkamp N, Kaddor C, Steinbüchel A, Berg G (2011) Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant Soil 347:125–136. https://doi.org/10.1007/s11104-011-0833-8

    Article  CAS  Google Scholar 

  7. Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2013) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4:197–204. https://doi.org/10.1007/s13205-013-0143-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jasim B, Anish MC, Shimil V, Jyothis M, Radhakrishnan EK (2015) Studies on plant growth promoting properties of fruit-associated bacteria from Elettaria cardamomum and molecular analysis of ACC deaminase gene. Biotechnol Appl Biochem 177:175–189. https://doi.org/10.1007/s12010-015-1736-6

    Article  CAS  Google Scholar 

  9. Jasim B, Jimtha John C, Shimil V, Jyothis M, Radhakrishnan EK (2014) Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdcgene. J Appl Microbiol 117:786–799. https://doi.org/10.1111/jam.12569

    Article  CAS  PubMed  Google Scholar 

  10. Deleu M, Razafindralambo H, Popineau Y, Jacques P, Thonart P, Paquot M (1999) Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids Surf A Physicochem Eng Asp 152:3–10. https://doi.org/10.1016/s0927-7757(98)00627-x

    Article  CAS  Google Scholar 

  11. Kandel SL, Firrincieli A, Joubert PM, Okubara PA, Leston ND, Mc George KM, Mugnozza GS, Harfouche A, Kim S-H, Doty SL (2017) An in vitro study of bio-control and plant growth promotion potential of Salicaceae endophytes. Front Microbiol 8:386. https://doi.org/10.3389/fmicb.2017.00386

    Article  PubMed  PubMed Central  Google Scholar 

  12. Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937. https://doi.org/10.3389/fmicb.2015.00937

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963. https://doi.org/10.1016/s0038-0717(02)00027-5

    Article  CAS  Google Scholar 

  14. Roongsawang N, Washio K, Morikawa M (2010) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 12:141–172. https://doi.org/10.3390/ijms12010141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Straus SK, Hancock REW (2006) Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta 1758:1215–1223. https://doi.org/10.1016/j.bbamem.2006.02.009

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214. https://doi.org/10.1089/10665270050081478

    Article  CAS  PubMed  Google Scholar 

  17. Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194:893–899. https://doi.org/10.1007/s00203-012-0823-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahmad A, Ashraf Y (2016) In vitro and in vivo management of alternaria leaf spot of Brassica campestris L. J Plant Pathol Microbiol 7:365. https://doi.org/10.4172/2157-7471.1000365

    Article  CAS  Google Scholar 

  19. Rahman A, Sitepu IR, Tang S-Y, Hashidoko Y (2014) Salkowski’s reagent test as a primary screening index for functionalities of rhizobacteria isolated from wild dipterocarp saplings growing naturally on medium-strongly acidic tropical peat soil. Biosci Biotechnol Biochem 74:2202–2208. https://doi.org/10.1271/bbb.100360

    Article  CAS  Google Scholar 

  20. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181. https://doi.org/10.1016/j.micres.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  21. Surange S, Wollum AG II, Kumar N, Nautiyal CS (1997) Characterization of rhizobium from root nodules of leguminous trees growing in alkaline soils. Can J Microbiol 43:891–894. https://doi.org/10.1139/m97-130

    Article  CAS  Google Scholar 

  22. Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol 7:1785. https://doi.org/10.3389/fmicb.2016.01785

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rania ABA, Jabnoun-Khiareddine H, Nefzi A, Mokni-Tlili S, Daami-Remadi M (2016) Endophytic bacteria from Datura metel for plant growth promotion and bioprotection against Fusarium wilt in tomato. Biocontrol Sci Tech 26:1139–1165. https://doi.org/10.1080/09583157.2016.1188264

    Article  Google Scholar 

  24. Jasim B, John Jimtha C, Jyothis M, Radhakrishnan EK (2013) Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul 71:1–11. https://doi.org/10.1007/s10725-013-9802-y

    Article  CAS  Google Scholar 

  25. Mihaylova V, Lyubomirova V, Djingova R (2013) Optimization of sample preparation and ICP-MS analysis for determination of 60 elements for characterization of the plant ionome. Int J Environ Anal Chem 93:1441–1456. https://doi.org/10.1080/03067319.2012.736978

    Article  CAS  Google Scholar 

  26. Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224. https://doi.org/10.1016/j.apsoil.2011.09.011

    Article  Google Scholar 

  27. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny J-L, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x

    Article  CAS  PubMed  Google Scholar 

  28. Gond SK, Bergen MS, Torres MS, White Jr JF (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87. https://doi.org/10.1016/j.micres.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  29. Janssen PJ, Liu X, Ren B, Gao H, Liu M, Dai H, Song F, Yu Z, Wang S, Hu J, Kokare CR, Zhang L (2012) Optimization for the production of surfactin with a new synergistic antifungal activity. PLoS One 7:e34430. https://doi.org/10.1371/journal.pone.0034430

    Article  CAS  Google Scholar 

  30. Moran S, Robertson K, Paradisi F, Rai DK, Murphy CD (2010) Production of lipopeptides in Bacillus sp. CS93 isolated from pozol. FEMS Microbiol Lett 304:69–73. https://doi.org/10.1111/j.1574-6968.2009.01882.x

    Article  CAS  PubMed  Google Scholar 

  31. Teixeira ML, Rosa AD, Brandelli A (2013) Characterization of an antimicrobial peptide produced by Bacillus subtilis subsp. spizezinii showing inhibitory activity towards Haemophilus parasuis. Microbiology 159:980–988. https://doi.org/10.1099/mic.0.062828-0

    Article  CAS  PubMed  Google Scholar 

  32. Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174. https://doi.org/10.1016/0300-483x(94)90159-7

    Article  CAS  PubMed  Google Scholar 

  33. Bakker PAHM, Doornbos RF, Zamioudis C, Berendsen RL, Pieterse CMJ (2013) Induced systemic resistance and the rhizosphere microbiome. Plant Pathol J 29:136–143. https://doi.org/10.5423/ppj.si.07.2012.0111

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baldrich P, Campo S, Wu M-T, Liu T-T, Hsing Y-IC, Segundo BS (2015) MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol 12:847–863. https://doi.org/10.1080/15476286.2015.1050577

    Article  PubMed  PubMed Central  Google Scholar 

  35. Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee I-J (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64. https://doi.org/10.1016/j.ejbt.2016.02.001

    Article  CAS  Google Scholar 

  36. Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2006) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880. https://doi.org/10.1007/s00253-006-0731-9

    Article  CAS  PubMed  Google Scholar 

  37. Carvalho TLG, Balsemao-Pires E, Saraiva RM, Ferreira PCG, Hemerly AS (2014) Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot 65:5631–5642. https://doi.org/10.1093/jxb/eru319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Prof. C. T. Aravindakumar, Hon. Director, and Mr. Dineep D., Scientific Assistant of the Inter-University Instrumentation Centre, Mahatma Gandhi University, Kottayam, for LC-MS and LC-MS/ MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Radhakrishnan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Electronic Supplementary Material

ESM 1

(DOCX 391 kb)

ESM 2

(DOCX 111 kb)

ESM 3

(DOCX 16.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakumar, A., Krishna, A., Mohan, M. et al. Plant Growth Enhancement, Disease Resistance, and Elemental Modulatory Effects of Plant Probiotic Endophytic Bacillus sp. Fcl1. Probiotics & Antimicro. Prot. 11, 526–534 (2019). https://doi.org/10.1007/s12602-018-9417-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9417-8

Keywords

Navigation