Skip to main content

Advertisement

Log in

Characterization of Candida famata Isolated from Poultry Feces for Possible Probiotic Applications

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

We studied here the yeast content of poultry feces, collected randomly from a French farm located in the north of the country. Thus, 81 yeast colonies were isolated and clustered into 22 distinct groups using the rep-PCR method. A single colony was taken from each group and identified using biochemical (ID 32C system) and molecular (sequencing of the D1/D2 domain of 26S rDNA and ITS1-5.8-ITS2 rDNA region) methods. Both methods led to the identification of Candida famata species. One isolate of C. famata strains, named strain Y5, was further studied for its cytotoxicity, adhesion, and surface properties, hemolytic activity, and its survival in simulated gastric and intestine environments. The data obtained advocate the probiotic potential of this isolate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anadón A, Larrañaga RMM, Martínez AM (2006) Probiotics for animal nutrition in the European union, regulation and safety assessment. Regul Toxicol Pharmacol 45:91–95

    Article  Google Scholar 

  2. Tellez G, Pixley C, Wolfenden RE, Layton SL, Hargis BM (2012) Probiotics/direct fed microbials for Salmonella control in poultry. Food Res Int 45:628–633

    Article  Google Scholar 

  3. Haddad N, Burns CM, Bolla JM, Prévost H, Fédérighi M, Drider D, Cappelier JM (2009) Long-term survival of Campylobacter jejuni at low temperatures is dependent on polynucleotide phosphorylase activity. Appl Environ Microbiol 75:7310–7318

    Article  CAS  Google Scholar 

  4. Apajalahti J, Kettunen A, Graham H (2004) Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World Poult Sci J 60:223–232

    Article  Google Scholar 

  5. Chambers JR, Gong J (2011) The intestinal microbiota and its modulation for Salmonella control in chickens. Food Res Int 44:3149–3159

    Article  Google Scholar 

  6. Cisek AA, Binek M (2014) Chicken intestinal microbiota function with a special emphasis on the role of probiotic bacteria. Pol J Vet Sci 17:385–394

    CAS  Google Scholar 

  7. Jozefiak D, Rutkowski A, Kaczmarek S, Jensen BB, Engberg RM, Højberg O (2010) Effect of β-glucanase and xylanase supplementation of barley- and rye-based diets on caecal microbiota of broiler chickens. Br Poult Sci 51:546–557

    Article  CAS  Google Scholar 

  8. Singh KM, Shah TM, Reddy B, Deshpande S, Rank DN, Joshi CG (2014) Taxonomic and gene-centric metagenomics of the fecal microbiome of low and high feed conversion ratio (FCR) broilers. J Appl Genet 55:145–154

    Article  CAS  Google Scholar 

  9. Banjeree P, Pradhan NR (2006) Live yeasts a good alternative to AGP in broiler chickens. World Poult 22:32–34

    Google Scholar 

  10. Higgins SE, Erf GF, Higgins JP, Henderson SN, Wolfenden AD, Gaona-Ramirez G, Hargis BM (2007) Effect of probiotic treatment in broiler chicks on intestinal macrophage numbers and phagocytosis of Salmonella enteritidis by abdominal exudate cells. Poult Sci 86:2315–2321

    Article  CAS  Google Scholar 

  11. Higgins SE, Higgins JP, Wolfenden AD, Henderson SN, Torres-Rodriguez A, Tellez G, Hargis B (2008) Evaluation of a Lactobacillus-based probiotic culture for the reduction of Salmonella enteritidis in neonatal broiler chicks. Poult Sci 87:27–31

    Article  CAS  Google Scholar 

  12. La Ragione RM, Woodward MJ (2003) Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype enteritidis and Clostridium perfringens in young chickens. Vet Microbiol 94:245–256

    Article  Google Scholar 

  13. La Ragione RM, Narbad A, Gasson MJ, Woodward MJ (2004) In vivo characterization of Lactobacillus johnsonii FI9785 for use as a defined competitive exclusion agent against bacterial pathogens in poultry. Lett Appl Microbiol 38:197–205

    Article  Google Scholar 

  14. Harju S, Fedosyuk H, Peterson KR (2004) Rapid isolation of yeast genomic DNA: Bust n’ Grab. BMC Biotechnol 4:8–13

    Article  Google Scholar 

  15. Ouoba LII, Kando C, Parkouda C, Sawadogo-Lingani H, Diawara B, Sutherland JP (2012) The microbiology of Bandji, palm wine of Borassus akeassii from Burkina Faso: identification and genotypic diversity of yeasts, lactic acid and acetic acid bacteria. J Appl Microbiol 113:1428–1441

    Article  CAS  Google Scholar 

  16. Ouoba LII, Nyanga-Koumou CAG, Parkouda C, Sawadogo H, Kobawila SC, Keleke S, Diawara B, Louembe D, Sutherland JP (2010) Genotypic diversity of lactic acid bacteria isolated from African traditional alkaline-fermented foods. J Appl Microbiol 108:2019–2029

    CAS  Google Scholar 

  17. Al Kassaa I, Hamze M, Hober D, Chihib NE, Drider D (2014) Identification of vaginal lactobacilli with potential probiotic properties isolated from women in North Lebanon. Microbial Ecol 67:722–734

    Article  Google Scholar 

  18. Cocolin L, Bisson LF, Mills DA (2000) Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol Lett 189:81–87

    Article  CAS  Google Scholar 

  19. Cocolin L, Aggio D, Manzano M, Cantoni C, Comi G (2002) An application of PCR-DGGE analysis to profile the yeast populations in raw milk. Int Dairy J 12:407–411

    Article  CAS  Google Scholar 

  20. Belloch C, Barrio E, Garcia MD, Querol A (1998) Phylogenetic reconstruction of the yeast genus Kluyveromyces: restriction map analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacer. Syst Appl Micriobiol 21:266–273

    Article  CAS  Google Scholar 

  21. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246

    Article  CAS  Google Scholar 

  22. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642

    Article  CAS  Google Scholar 

  23. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  24. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84:759–768

    Article  CAS  Google Scholar 

  25. Williamson KJ, Johnson DG (1981) A bacterial bioassay for assessment of wastewater toxicity. Water Res 15:383–390

    Article  CAS  Google Scholar 

  26. Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, Lee MD, Collett SR, Johnson TJ, Cox NA (2014) The chicken gastrointestinal microbiome. FEMS Microbiol Lett 360:100–112

    Article  CAS  Google Scholar 

  27. Yeoman CJ, Chia N, Jeraldo P, Sipos M, Goldenfeld ND, White BA (2012) The microbiome of the chicken gastrointestinal tract. Anim Health Res Rev 13:89–99

    Article  Google Scholar 

  28. Newell DG, Elvers KT, Dopfer D, Hansson I, Jones P, James S, Gittins J, Stern NJ, Davies R, Connerton I, Pearson D, Salvat G, Allen VM (2011) Biosecurity-based interventions and strategies to reduce Campylobacter spp. on poultry farms. Appl Environ Microbiol 77:8605–8614

    Article  CAS  Google Scholar 

  29. García-Hernández Y, Rodríguez Z, Brandão LR, Rosa CA, Nicoli JR, Iglesias AE, Peréz-Sanchez T, Salabarría RB, Halaihel N (2012) Identification and in vitro screening of avian yeasts for use as probiotic. Res Vet Sci 93:798–802

    Article  Google Scholar 

  30. Dmytruk KV, Sibirny AA (2012) Candida famata (Candida flareri). Yeast 29:453–458

    Article  CAS  Google Scholar 

  31. Beyda ND, Chuang SH, Alam MJ, Shah DN, Ng TM, McCaskey L, Garey KW (2013) Treatment of Candida famata bloodstream infections: case series and review of the literature. J Antimicrob Chemother 68:438–443

    Article  CAS  Google Scholar 

  32. Castanheira M, Woosley LN, Diekema DJ, Jones RN, Pfaller MA (2013) Candida guilliermondii and other species of Candida misidentified as Candida famata: assessment by vitek 2, DNA sequencing analysis, and matrix-assisted laser desorption ionization-time of flight mass spectrometry in two global antifungal surveillance programs. J Clin Microbiol 51:117–124

    Article  CAS  Google Scholar 

  33. Hatoum R, Labrie S, Fliss I (2012) Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 19(3):421

    Google Scholar 

  34. Drider D, Rebuffat S (2011) Prokaryotic antimicrobial peptides: from genes to applications. Springer Science & Business Media, NY

    Book  Google Scholar 

  35. Rossoni RD, Barbosa JO, Vilela SF, Jorge AO, Junqueira JC (2013) Comparison of the hemolytic activity between C. albicans and non-albicans Candida species. Braz Oral Res 27:484–489

    Article  Google Scholar 

  36. Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AO (2010) Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 25:385–389

    Article  Google Scholar 

  37. Emira N, Mejdi S, Dorra K, Amina B, Eulogio V (2011) Comparison of the adhesion ability of Candida albicans strains to biotic and abiotic surfaces. Afr J Biotechnol 10:977–985

    Google Scholar 

  38. Pacheco M, Pisa D, García-Gómez P, Carrasco L, Juarranz A (2007) Attachment and entry of Candida famata in monocytes and epithelial cells. Microsc Res Tech 70:975–986

    Article  Google Scholar 

Download references

Acknowledgments

Alaa Al Seriah was a recipient of PhD scholarship awarded from Iraqi and French governments, managed by Campus France. Research at Charles Viollette Institute was supported by Industrial research program funded by Best Environmental Technologies (Alberta, Canada). We are indebted to Mickaël Chevalier for his technical assistance in MALDI-TOF MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel Drider.

Ethics declarations

Conflict of interest

Alaa Al-Seraih, Christophe Flahaut, François Krier, Benoit Cudennec and Djamel Drider declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Seraih, A., Flahaut, C., Krier, F. et al. Characterization of Candida famata Isolated from Poultry Feces for Possible Probiotic Applications. Probiotics & Antimicro. Prot. 7, 233–241 (2015). https://doi.org/10.1007/s12602-015-9201-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-015-9201-y

Keywords

Navigation