Skip to main content
Log in

Investigation into the Potential of Bacteriocinogenic Lactobacillus plantarum BFE 5092 for Biopreservation of Raw Turkey Meat

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The bacteriocin-producing Lactobacillus plantarum BFE 5092 was assessed for its potential as a protective culture in the biopreservation of aerobically stored turkey meat. This strain produces three bacteriocins, i.e. plantaricins EF, JK and N. The absolute expression of Lactobacillus plantarum BFE 5092 16S rRNA housekeeping gene, as well as l-ldh, plnEF and plnG genes as determined by quantitative, real-time-PCR, revealed that these genes were expressed to similar levels when the strain was grown at 8 and 30 °C in MRS broth. On turkey meat, Lactobacillus plantarum BFE 5092 did not grow but survived, as indicated by similar viable cell numbers during a 9-day storage period at 8 °C. When inoculated at 1 × 107 CFU/g on the turkey meat and subsequently stored at 10 °C, the culture did again not show good growth. Lactobacillus plantarum BFE 5092 could not inhibit the growth of naturally occurring listeriae or Gram-negative bacteria on the turkey meat at 10 °C, or that of Listeria monocytogenes when it was co-inoculated at a level of 1 × 105 CFU/g. Gene expression analyses showed that the bacteriocin genes were expressed on turkey meat stored at 10 °C. Moreover, the investigation into the absolute expression of the three plantaricin genes of Lactobacillus plantarum BFE 5092 in co-culture with Listeria monocytogenes on turkey meat by qRT-PCR showed that the plantaricin genes were indeed expressed during the low-temperature storage condition. The Lactobacillus plantarum BFE 5092 strain overall could not effectively inhibit L. monocytogenes and therefore it would not make a suitable protective culture for biopreservation of turkey meat stored aerobically at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ben Omar N, Abriouel H, Keleke S, Sánchez Valenzuela A, Martínez-Cañamero M, Lucas López R, Ortega E, Gálvez A (2008) Bacteriocin-producing Lactobacillus strains isolated from poto poto, a Congolese fermented maize product, and genetic fingerprinting of their plantaricin operons. Int J Food Microbiol 127:18–25

    Article  CAS  Google Scholar 

  2. Blom H, Katla T, Hagen BF, Axelsson L (1997) A model assay to demonstrate how intrinsic factors affect diffusion of bacteriocins. Int J Food Microbiol 38:103–109

    Article  CAS  Google Scholar 

  3. Budde BB, Hornbaek T, Jacobsen T, Barkholt V, Koch AG (2002) Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: culture isolation, bacteriocin identification, and meat application experiments. Int J Food Microbiol 83:171–184

    Article  Google Scholar 

  4. Chaillou S, Champomier-Vergès MC, Cornet M, Crutz-LeCoq AM, Dudez AM, Martin V, Beaufils S, Darbon-Rongère E (2005) The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23 K. Nat Biotechnol 23:1527–1533

    Article  CAS  Google Scholar 

  5. Cho GS, Huch M, Hanak A, Holzapfel WH, Franz CM (2010) Genetic analysis of the plantaricin EFI locus of Lactobacillus plantarum PCS20 reveals an unusual plantaricin E gene sequence as a result of mutation. Int J Food Microbiol 2010 Feb 23. [Epub ahead of print]. doi:10.1016/jijfoodmicro.2010.02.022

  6. Diep DB, Håvarstein LS, Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178:4472–4483

    CAS  Google Scholar 

  7. Diep DB, Straume D, Kjos M, Torres C, Nes IF (2009) An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides 30:1562–1574

    Article  CAS  Google Scholar 

  8. Dortu C, Huch M, Holzapfel WH, Franz CMAP, Thonart P (2008) Anti-listerial activity of bacteriocin-producing Lactobacillus curvatus CWBI-B28 and Lactobacillus sakei CWBI-B1365 on raw beef and poultry meat. Lett Appl Microbiol 47:581–586

    Article  CAS  Google Scholar 

  9. Ehrmann MA, Remiger A, Eijsink VG, Vogel RF (2000) A gene cluster encoding plantaricin 1.25beta and other bacteriocin-like peptides in Lactobacillus plantarum TMW1.25. Biochim Biophys Acta 1490:355–361

    CAS  Google Scholar 

  10. Gálvez A, Abriouel H, López RL, Ben Omar N (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Article  Google Scholar 

  11. Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15

    Article  Google Scholar 

  12. Gänzle MG, Weber S, Hammes WP (1999) Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. Int J Food Microbiol 46:207–217

    Article  Google Scholar 

  13. Holck A, Axelsson L, Birkeland SE, Aukrust T, Blom H (1992) Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sakei Lb706. J Gen Microbiol 138:2715–2720

    CAS  Google Scholar 

  14. Holck A, Axelsson L, Hühne K, Kröckel L (1994) Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake Lb674. FEMS Microbiol Lett 115:143–149

    Article  CAS  Google Scholar 

  15. Holo H, Jeknic Z, Daeschel M, Stevanovic S, Nes IF (2001) Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology 147:643–651

    CAS  Google Scholar 

  16. Hugas M, Pagés F, Garriga M, Monfort JM (1998) Application of the bacteriocinogenic Lactobacillus sakei CTC494 to prevent growth of Listeria in fresh and cooked meat products packed with different atmospheres. Food Microbiol 15:639–650

    Article  Google Scholar 

  17. Hüfner E, Markieton T, Chaillou S, Crutz-Le Coq AM, Zagorec M, Hertel C (2007) Identification of Lactobacillus sakei genes induced during meat fermentation and their role in survival and growth. Appl Environ Microbiol 73:2522–2531

    Article  Google Scholar 

  18. Katla T, Moretro T, Sveen I, Aasen IM, Axelsson L, Rorvik LM, Naterstad K (2002) Inhibition of Listeria monocytogenes in chicken cold cuts by addition of sakacin P and sakacin P-producing Lactobacillus sakei. J Appl Microbiol 93:191–196

    Article  CAS  Google Scholar 

  19. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995

    Article  CAS  Google Scholar 

  20. Knoll C, Divol B, du Toit M (2008) Genetic screening of lactic acid bacteria of oenological origin for bacteriocin-encoding genes. Food Microbiol 25:983–991

    Article  CAS  Google Scholar 

  21. Larsen AG, Vogesen FK, Josephsen J (1993) Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. J Appl Bacteriol 75:113–122

    CAS  Google Scholar 

  22. Leisner JJ, Greer GG, Stiles ME (1996) Control of beef spoilage by a sulfide-producing Lactobacillus sake strain with bacteriocinogenic Leuconostoc gelidum UAL187 during anaerobic storage at 2 °C. Appl Environ Microbiol 62:2610–2614

    CAS  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  24. Lücke FK (2000) Utilization of microbes to process and preserve meat. Meat Sci 56:105–115

    Article  Google Scholar 

  25. Maldonado A, Ruiz-Barba JL, Jiménez-Díaz R (2003) Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of gram-positive bacteria. Arch Microbiol 181:8–16

    Article  Google Scholar 

  26. Mathara JM, Schillinger U, Kutima PM, Mbugua SK, Holzapfel WH (2004) Isolation, identification and characterisation of the dominant microorganisms of kule naoto: the Maasai traditional fermented milk in Kenya. Int J Food Microbiol 94:269–278

    Article  CAS  Google Scholar 

  27. Mengesha D, Zewde BM, Toquin MT, Kleer J, Hildebrandt G, Gebreyes WA (2009) Occurrence and distribution of Listeria monocytogenes and other Listeria species in ready-to-eat and raw meat products. Berl Münch Tierarztl Wochenschr 122:20–24

    Google Scholar 

  28. Messens W, De VL (2002) Inhibitory substances produced by Lactobacilli isolated from sourdoughs-a review. Int J Food Microbiol 72:31–43

    Article  CAS  Google Scholar 

  29. Müller DM, Carrasco MS, Tonarelli GG, Simonetta AC (2009) Characterization and purification of a new bacteriocin with a broad inhibitory spectrum produced by Lactobacillus plantarum lp 31 strain isolated from dry-fermented sausage. J Appl Microbiol 106:2031–2040

    Article  Google Scholar 

  30. Nielsen DS, Cho GS, Hanak A, Huch M, Franz CM, Arneborg N (2010) The effect of bacteriocin-producing Lactobacillus plantarum strains on the intracellular pH of sessile and planktonic Listeria monocytogenes single cells. Int J Food Microbiol 2010 Apr 14. [Epub ahead of print]. doi:10.1016/j.ijfoodmicro.2010.03.040

  31. Sáenz Y, Rojo-Bezares B, Navarro L, Díez L, Somalo S, Zarazaga M, Ruiz-Larrea F, Torres C (2009) Genetic diversity of the pln locus among oenological Lactobacillus plantarum strains. Int J Food Microbiol 134:176–183

    Article  Google Scholar 

  32. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  33. Shin J, Harte B, Ryser E, Selke S (2010) Active packaging of fresh chicken breast, with allyl isothiocyanate (AITC) in combination with modified atmosphere packaging (MAP) to control the growth of pathogens. J Food Sci 75:65–71

    Article  Google Scholar 

  34. Vizoso Pinto MG, Franz CM, Schillinger U, Holzapfel WH (2006) Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int J Food Microbiol 109:205–214

    Article  CAS  Google Scholar 

  35. Vizoso Pinto MG, Schuster T, Briviba K, Watzl B, Holzapfel WH, Franz CM (2007) Adhesive and chemokine stimulatory properties of potentially probiotic Lactobacillus strains. J Food Prot 70:125–134

    Google Scholar 

  36. Winkowski K, Crandall AD, Montville TJ (1993) Inhibition of Listeria monocytogenes by Lactobacillus bavaricus MN in beef systems at refrigeration temperatures. Appl Environ Microbiol 59:2552–2557

    CAS  Google Scholar 

  37. Zonenschain D, Rebecchi A, Morelli L (2009) Erythromycin- and tetracycline-resistant lactobacilli in Italian fermented sausages. J Appl Microbiol 107:1559–1568

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the European Commission within the VI Framework Program, contract no. 007081, “Pathogen Combat: Control and prevention of emerging and future pathogens at cellular and molecular level throughout the food chain”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. A. P. Franz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, GS., Hanak, A., Huch, M. et al. Investigation into the Potential of Bacteriocinogenic Lactobacillus plantarum BFE 5092 for Biopreservation of Raw Turkey Meat. Probiotics & Antimicro. Prot. 2, 241–249 (2010). https://doi.org/10.1007/s12602-010-9053-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-010-9053-4

Keywords

Navigation