Skip to main content
Log in

Preference of Bemisia tabaci MED (Hemiptera: Aleyrodidae) among morphologically and physically distinct tomato genotypes

  • Research
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The recent introduction of Bemisia tabaci (Gennadius) MED (Hemiptera: Aleyrodidae) in the main tomato-producing areas in Brazil is concerning due to its high infestation capacity and to the numerous lethal viruses that this insect can transmit to plants. In addition, B. tabaci MED has a history of lower susceptibility to several groups of insecticides. Thus, this study evaluated the preference of B. tabaci MED among 39 tomato genotypes, belonging to seven Solanum species, as well as the physical and morphological factors related to the preference. The tomato genotypes LA 716, IAC 294, PI 127,826, PI 134,418, PI 134,417, Tainara, PI 126,925 and LA 116 expressed resistance to B. tabaci MED. The density of glandular trichomes was negatively correlated with the number of adults, B. tabaci MED eggs/cm² and nymphs/cm². On the other hand, the density of non-glandular trichomes and the slope of the trichomes stimulated the colonization by adults of B. tabaci MED. Substrate color was not correlated with genotype preference. The resistant genotypes and their characteristics can be explored in genetic breeding programs with the aim of developing cultivars resistant to whiteflies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baldin, E. L. L., & Beneduzzi, R. A. (2010). Characterization of antibiosis and antixenosis to the whitefly silverleaf Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) in several squash varieties. Journal of Pest Science, 83, 223–229.

    Article  Google Scholar 

  • Baldin, E. L. L., & Bentivenha, J. P. F. (2019). Fatores que afetam a expressão da resistência. In Baldin, E. L. L. Vendramin, J. D. & Lourenção, A. L. (Eds.), Resistencia de plantas a insetos, Fundamentos e Aplicação (1st ed., pp.493). Fealq.

  • Baldin, E. L. L., Vendramim, J. D., & Lourenção, A. L. (2005). Resistência de genótipos de tomateiro à mosca-branca Bemisia tabaci (Gennadius) biótipo B (Hemiptera: Aleyrodidae). Neotropical Entomology, 34, 435–441.

    Article  Google Scholar 

  • Baldin, E. L. L., Cruz, P. L., Morando, R., Silva, I. F., Bentivenha, J. P. F., & Tozin, L. R. S. (2017). Characterization of antixenosis in soybean genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. Journal of Economic Entomology, 110, 1869–1876.

    Article  CAS  PubMed  Google Scholar 

  • Bello, V. H., Watanabe, L. F. M., Fusco, L. M., March, B. R. D., Silva, F. B., Goraybe, E. S., et al. (2020). Outbreaks of Bemisia tabaci Mediterranean species in vegetable crops in São Paulo and Paraná States, Brazil. Bulletin Entomolical Research, 110, 487–496.

    Article  Google Scholar 

  • Bello, V. H., Silva, F. B., Watanabe, L. F. M., Vicentin, E., Muller, C., Bueno, R. C. O. F., et al. (2021). Detection of Bemisia tabaci mediterranean cryptic species on soybean in São Paulo and Paraná States (Brazil) and interaction of cowpea mild mottle virus with whiteflies. Plant Pathology, 70, 1508–1520.

    Article  Google Scholar 

  • Bergau, N., Bennewitz, S., Syrowatka, F., Hause, G., & Tissier, A. (2015). The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites. Bmc Plant Biology, 15, 1–15.

    Article  Google Scholar 

  • Berlinger, M. J. (1986). Host plant resistance to Bemisia tabaci. Agriculture Ecosystems & Environment, 17, 69–82.

    Article  Google Scholar 

  • Bitew, M. K. (2018). Significant role of wild genotypes of tomato trichomes for Tuta absoluta resistance. Journal of Plant Genetics and Breeding, 2, 104.

    Google Scholar 

  • Cappetta, E., Andolfo, G., Guadagno, A., Di Matteo, A., Barone, A., Frusciante, L., et al. (2021). Tomato genomic prediction for good performance under high-temperature and identification of loci involved in thermotolerance response. Horticulture Research, 8, 1–16.

    Article  Google Scholar 

  • Carvalho, C. R. F., Ponciano, N. J., De Souza, P. M., & De Souza, C. L. M. (2014). Viabilidade econômica e de risco da produção de tomate no município de Cambuci/RJ, Brasil. Ciencia Rural, 44, 2293–2299.

    Article  Google Scholar 

  • Channarayappa, Shivashankar, G., Muniyappa, V., & Frist, R. H. (2011). Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Canadian Journal of Botany, 70, 2184–2192.

  • Coelho, S. A. M. P., Lourenção, A. L., De Melo, A., M. T, & Schammass, E. A. (2009). Resistance of melon to Bemisia tabaci biotype B. Bragantia, 68, 1025–1035.

    Article  Google Scholar 

  • De Barro, P. J., Scott, K. D., Graham, G. C., Lange, C. L., & Schutze, M. K. (2003). Isolation and characterization of microsatellite loci in Bemisia tabaci. Molecular Ecology Notes, 3, 40–43.

    Article  Google Scholar 

  • De Barro, P. J., Liu, S. S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1–19.

    Article  PubMed  Google Scholar 

  • Elbert, A., & Nauen, R. (2000). Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern spain with special reference to neonicotinoids. Pest Management Science, 56, 60–64.

    Article  CAS  Google Scholar 

  • Elsen, O. F., Lucatti, A. F., van Heusden, S., Broekgaarden, C., Mumm, R., Dicke, M., et al. (2016). Quantitative resistance against Bemisia tabaci in Solanum pennellii: Genetics and metabolomics. Journal of Integrative Plant Biology, 58, 397–412.

    Article  Google Scholar 

  • EPPO (2022). European and mediterranean plant protection organization. https://www.eppo.int/. Accessed 03 Mar 2022.

  • Escobar-Bravo, R., Ruijgrok, J., Kim, H. K., Grosser, K., Van Dam, N. M., Klinkhamer, P. G., L, et al. (2018). Light intensity-mediated induction of trichome-associated allelochemicals increases resistance against thrips in tomato. Plant Cell Physiology, 59, 2462–2475.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fancelli, M., Vendramim, J. D., Lourenção, A. L., & Dias, C. T. S. (2003). Atratividade e preferência para oviposição de Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biótipo B em genótipos de tomateiro. Neotropical Entomology, 32, 319–328.

    Article  Google Scholar 

  • Firdaus, S., Heusden, A. W., Hidayati, N., Supena, E. D. J., Visser, R. G. F., & Vosman, B. (2012). Resistance to Bemisia tabaci in tomato wild relatives. Euphytica, 187, 31–45.

    Article  Google Scholar 

  • Galdon-Armero, J., Arce-Rodriguez, L., Downie, M., Li, J., & Martin, C. (2020). A scanning electron micrograph-based resource for identification of loci involved in epidermal development in tomato: Elucidation of a new function for the mixta-like transcription factor in leaves. The Plant Cell, 32, 1414–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glas, J. J., Schimmel, B. C. J., Alba, J. M., Escobar-Bravo, R., Schuurink, R. C., & Kant, M. R. (2012). Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. International Journal of Molecular Sciences, 13, 17077–17103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horowitz, A. R., Kontsedalov, S., Khasdan, V., & Ishaaya, I. (2005). Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58, 216–225.

    Article  CAS  PubMed  Google Scholar 

  • Horowitz, A. R., Ghanim, M., Roditakis, E., Nauen, R., & Ishaaya, I. (2020). Insecticide resistance and its management in Bemisia tabaci species. Journal of Pest Science, 93, 893–910.

    Article  Google Scholar 

  • Husain, M. A., & Trehan, K. N. (1940). Final report on the scheme of investigations on the whitefly on cotton in the Punjab. Indian Journal of Agricultural Sciences, 10, 101–109.

    Google Scholar 

  • Inoue-Nagata, A. K. (2016). Vírus transmitidos por moscas-brancas no Brasil: Vetores, principais doenças e manejo. In RJD Dalio (Ed.), Revisão anual de patologia de plantas (pp. 7–29) Sociedade Brasileira de Fitopatologia.

  • Kanakala, S., & Ghanim, M. (2019). Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE, 14, e0213946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kontsedalov, S., Abu-Moch, F., Lebedev, G., Czosnek, H., Horowitz, A. R., & Ghanim, M. (2012). Bemisia tabaci Biotype dynamics and resistance to insecticides in Israel during the years 2008–2010. Journal of Integrative Agriculture, 11, 312–320.

    Article  CAS  Google Scholar 

  • Lambert, A. L., McPherson, R. M., & Espelie, K. E. (1995). Soybean host plant resistance mechanisms that alter abundance of whiteflies (Homoptera: Aleyrodidae). Environmental Entomology, 24, 1381–1386.

    Article  Google Scholar 

  • Liu, Y., Jing, S. X., Shi, A., Luo, H., & Li, S. H. (2019). Non-volatile natural products in plant glandular trichomes: Chemistry, biological activities and biosynthesis. Natural Product Reports, 36, 626–665.

    Article  CAS  PubMed  Google Scholar 

  • Lourenção, A. L., Krause-Sakate, R., & Valle, G. E. (2015). Mosca-branca Bemisia tabaci (Gennadius) biótipo B. In E. F. Vilela & R. A. Zucchi (Eds.), Pragas Introduzidas no Brasil: Insetos e Ácaros (pp. 682–707). Fealq.

    Google Scholar 

  • Lybrand, D. B., Anthony, T. M., Jones, A. D., & Last, R. L. (2020). An integrated analytical approach reveals trichome acylsugar metabolite diversity in the wild tomato Solanum pennellii. Metabolites, 10, 1–25.

    Article  Google Scholar 

  • Macedo, J. R., Capeche, C. L., Melo, A. S., & Bhering, S. B. (2005). Efeitos de lâmina de água e fertirrigação potássica sobre o crescimento, produção e qualidade do tomate em ambiente protegido. Ciência e Agrotecnologia, 29, 1–10.

    Article  Google Scholar 

  • Maluf, W. R., Barbosa, L. V., & Costa Santa-Cecília, L. V. (1997). 2-Tridecanone-mediated mechanisms of resistance to the south american tomato pinworm Scrobipalpuloides absoluta (Meyrick, 1917) (Lepidoptera-Gelechiidae) in Lycopersicon spp. Euphytica, 93, 189–194.

    Article  CAS  Google Scholar 

  • Maluf, W. R., Maciel, G. M., Gomes, L. A. A., Cardoso, M. G., Gonçalves, L. D., Silva, E. C., et al. (2010). Broad-spectrum arthropod resistance in hybrids between high-and low-acylsugar tomato lines. Crop Science, 50, 439–450.

    Article  Google Scholar 

  • Mckenzie, C. L., & Osborne, L. S. (2017). Bemisia tabaci MED (Q biotype) (Hemiptera: Aleyrodidae) in Florida is on the move to residential landscapes and may impact open-field agriculture. Florida Entomologist, 100, 481–484.

    Article  Google Scholar 

  • Millán-Chaidez, R., Garzón-Tiznado, J. A., Linares-Flores, P. J., Velarde-Félix, S., Lugo-Garciá, G. A., & Retes-Manjarrez, J. E. (2021). Resistance to Bemisia tabaci (Hemiptera: Aleyrodidae) Mediterranean (Q biotype) in landrace and wild tomato populations from Mexico. Florida Entomologist, 103, 472–478.

    Article  Google Scholar 

  • Mirnezhad, M., Romero-González, R. R., Leiss, K. A., Choi, Y. H., Verpoorte, R., & Klinkhamera, P. G. L. (2010). Metabolomic analysis of host plant resistance to thrips in wild and cultivated tomatoes. Phytochemical Analysis, 21, 110–117.

    Article  CAS  PubMed  Google Scholar 

  • Moraes, L. A., Marubayashi, J. M., Yuki, V. A., Ghanim, M., Bello, V. H., De Marchi, B. R., et al. (2017). New invasion of Bemisia tabaci Mediterranean species in Brazil associated to ornamental plants. Phytoparasitica, 45, 517–525.

    Article  Google Scholar 

  • Murillo, H., Hunt, D. W. A., & VanLaerhoven, S. L. (2013). Host suitability and fitness-related parameters of Campoletis sonorensis (Hymenoptera: Ichneumonidae) as a parasitoid of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Biological Control, 64, 10–15.

    Article  Google Scholar 

  • Navas-Castillo, J., Fiallo-Olivé, E., & Sánchez-Campos, S. (2011). Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219–248.

    Article  CAS  PubMed  Google Scholar 

  • Nombelam, G., & Muñiz, M. (2010). Host plant resistance for the management of Bemisia tabaci: A multi-crop survey with emphasis on Tomato. In P. Stansly & S. Naranjo (Eds.), Bemisia: Bionomics and Management of a global pest (1st ed., pp. 357–383). Springer.

    Google Scholar 

  • Novaes, N. S., Lourenção, A. L., Bentivenha, J. P. F., et al. (2020). Characterization and potential mechanisms of resistance of cucumber genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae). Phytoparasitica, 48, 643–657.

    Article  CAS  Google Scholar 

  • Oriani, M. A. G., & Vendramim, J. D. (2010). Influence of trichomes on attractiveness and ovipositional preference of Bemisia tabaci (Genn.) B biotype (Hemiptera: Aleyrodidae) on tomato genotypes. Neotropical Entomology, 39, 1002–1007.

    Article  PubMed  Google Scholar 

  • Panda, N., & Khush, G. A. (1995). Host plant resistance to insects. United Kingdom.

    Google Scholar 

  • Pastório, M. A., Hoshino, A. T., Kitzberger, C. S. G., Bortolotto, O. C., de Oliveira, L. M., dos Santos, A. M., et al. (2023). The leaf color and trichome density influence the whitefly infestation in different cassava cultivars. Insects, 14(1), 1–9.

    Google Scholar 

  • Prado, J. C., Penaflor, M. F. G. V., Cia, E., Vieira, S. S., Silva, K. I., Carlini-Garcia, L. A., & Lourenção, A. L. (2016). Resistance of cotton genotypes with different leaf colour and trichome density to Bemisia tabaci biotype B. Journal of Applied Entomology, 140, 405–413.

    Article  Google Scholar 

  • Ramos, R. S., Kumar, L., Shabani, F., & Picanço, M. C. (2018). Mapping global risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation under current and future climates. PLoS ONE, 13, e0198925.

    Article  PubMed  PubMed Central  Google Scholar 

  • Resende, J. T. V., Maluf, W. R., Faria, M. V., PfannIldon, A. Z., & Nascimento, R. (2006). Acylsugars in tomato leaflets confer resistance to the south american tomato pinworm. Tuta absoluta Meyr, Sci Agric, 63, 20–25.

    Article  Google Scholar 

  • Rodríguez-López, M. J., Garzo, E., Bonani, J. P., Fereres, A., Fernández-Muñoz, R., & Moriones, E. (2011). Whitefly resistance traits derived from the wild tomato Solanum pimpinellifolium affect the preference and feeding behavior of Bemisia tabaci and reduce the spread of Tomato yellow leaf curl virus. Phytopathology, 101, 1191–1201.

    Article  PubMed  Google Scholar 

  • Santos, T. L. B., Baldin, E. L. L., Ribeiro, L. P., et al. (2021). Resistance sources and antixenotic factors in brazilian bean genotypes against Bemisia tabaci. Neotropical Entomology, 50, 129–144.

    Article  CAS  PubMed  Google Scholar 

  • Silva, C. A. D., Lourenção, A. L., & Moraes, G. J. (1992). Resistência de tomateiros ao ácaro vermelho Tetranychus evansi Baker & Pritchard (Acari: Tetranychidae). Anais da Sociedade Entomológica do Brasil, 21, 147–156.

    Article  Google Scholar 

  • Silva, K. F. A. S., Michereff-Filho, M., Fonseca, M. E. N., Silva-Filho, J. G., Texeira, A. C. A., Onio, A., et al. (2014). Resistance to Bemisia tabaci biotype B of Solanum pimpinellifolium is associated with higher densities of type IV glandular trichomes and acylsugar accumulation. Entomologia Experimentalis et Applicata, 151, 218–230.

    Article  CAS  Google Scholar 

  • Smeda, J. R., Schilmiller, A. L., Anderson, T., Ben-Mahmoud, S., Ullman, D. E., & Chappell, T. M. (2018). Combination of acylglucose qtl reveals additive and epistatic genetic interactions and impacts insect oviposition and virus infection. Molecular Breeding, 38, 1–20.

    Article  CAS  Google Scholar 

  • Smith, C. M. (2005). Plant resistance to arthropods. Dordrecht: Springer Science & Business.

    Book  Google Scholar 

  • StatSoft (2004). Statistica for Windows. Version 7.0. Statsoft Inc., Tulsa.

  • Takatsui, Fabiana. Sistema CIE Lab: análise computacional de fotografias. 2011. 100 f. Thesis (Masters degree) - Universidade Estadual Paulista, Faculdade de Odontologia de Araraquara, 2011. Available in: .

  • Therezan, R., Kortbeek, R., Vendemiatti, E., Legarrea, S., Alencar, S. M., Schuurink, R. C., et al. (2021). Introgression of the sesquiterpene biosynthesis from Solanum habrochaites to cultivated tomato offers insights into trichome morphology and arthropod resistance. Planta, 254, 1–16.

    Article  Google Scholar 

  • Toscano, N. C., Prabhaker, N., Castle, S. J., & Henneberry, T. J. (2001). Inter-regional differences in baseline toxicity of Bemisia argentifolii (Homoptera: Aleyrodidae) to the two insect growth regulators, buprofezin and pyriproxyfen. Journal of Economic Entomology, 94, 1538–1546.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, N. F., & Triplehorn, C. A. (2005). Borror and DeLong’s Introduction to the Study of Insects (7th ed.). Brooks/Cole: Thomson.

    Google Scholar 

  • Valle, G. E., & Lourenção, A. L. (2002). Resistência de genótipos de soja a Bemisia tabaci (Genn.) biótipo B (Hemiptera: Aleyrodidae). Neotropical Entomology, 31, 285–295.

    Article  Google Scholar 

  • Vanderplank, J. E. (1968). Disease resistance in plants, critical reviews in plant sciences 18. Academic Press.

    Google Scholar 

  • VanLenteren, J. C., & Woets, J. (1988). Biological and integrated pest control in greenhouses. Annual Review of Entomolgy, 33, 239–269.

    Article  Google Scholar 

  • Vyskočilová, S., Seal, S., & Colvin, J. (2019). Relative polyphagy of “Mediterranean” cryptic Bemisia tabaci whitefly species and global pest status implications. Journal of Pest Science, 92, 1071–1088.

    Article  Google Scholar 

  • Wang, Q., Luo, C., & Wang, R. (2023). Insecticide Resistance and Its Management in Two Invasive Cryptic Species of Bemisia tabaci in China. International Journal of Molecular Sciences, 24, 6048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, L. F. M., Bello, V. H., De Marchi, B. R., Silva, F. B., Fusco, L. M., Sartori, M. M. P., et al. (2019). Performance and competitive displacement of Bemisia tabaci MEAM1 and MED cryptic species on different host plants. Crop Protection, 124, 104860.

    Article  Google Scholar 

  • Yamamoto, E., Matsunaga, H., Onogi, A., Ohyama, A., Miyatake, K., & Yamaguchi, H. (2017). Efficiency of genomic selection for breeding population design and phenotype prediction in tomato. Heredity (Edinb), 118, 202–209.

    Article  CAS  PubMed  Google Scholar 

  • Zeist, A. R., Resende, J. T. V., Perrud, A. C., Gabriel, A., Maluf, W. R., Arantes, J. H., V, et al. (2021). Resistance to Bemisia tabaci in tomato species and hybrids and its association with leaf trichomes. Euphytica, 217, 1–10.

    Article  Google Scholar 

  • Zhang, X. M., Yang, N. W., Wan, F. H., & Lövei, G. L. (2014). Density, and seasonal dynamics of Bemisia tabaci (Gennadius) Mediterranean on common crops and weeds around cotton fields in northern China. Journal of Integrative Agriculture, 13, 2211–2220.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior- Brazil (CAPES- Finance Code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brazil (CNPq − 306947/2018-8) and São Paulo Research Foundation (FAPESP- 2019/26090-2).

Author information

Authors and Affiliations

Authors

Contributions

M.C.S Data curation, Investigation, Writing – original draft. G.P.S, I.R.C and T.L.B.S.: Data curation, Investigation. A.S.S, A.L.L and E.L.L.B: Conceptualization, Methodology, Validation, Formal analysis, Writing, review & editing, Supervision.

Corresponding author

Correspondence to Alisson da Silva Santana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, M.C., da Silva Santana, A., Schulz, G.P. et al. Preference of Bemisia tabaci MED (Hemiptera: Aleyrodidae) among morphologically and physically distinct tomato genotypes. Phytoparasitica 51, 1025–1039 (2023). https://doi.org/10.1007/s12600-023-01100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-023-01100-y

Keywords

Navigation