Skip to main content
Log in

Insecticide resistance and its management in Bemisia tabaci species

  • Review
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The sweet potato (cotton) whitefly Bemisia tabaci is a major agricultural pest in various fields and vegetable crops worldwide. It causes extensive damage by direct feeding on plants, reducing quality, secreting honeydew and transmitting plant viruses. B. tabaci is known for its genetic diversity and considered a complex of biotypes or, as suggested, a complex of distinct cryptic species. Management of whiteflies relies mainly on the use of insecticides; however, its ability to develop resistance to major insecticide classes creates a serious challenge to farmers and pest control specialists. Among the cryptic species of B. tabaci, MED is considered more resistant than the MEAM1 to insecticides such as pyriproxyfen and neonicotinoids; however, in recent years there are other species of B. tabaci including MEAM1, Asia I and Asia II-1 that have developed high resistance to various groups of insecticides. Advanced methods based on molecular and gene sequence data obtained from resistant and susceptible field-collected B. tabaci populations resulted in a better understanding of resistance mechanisms in this pest. Several components of IPM-IRM (Integrated Pest Management-Insecticide Resistance Management) programs such as selective and biorational insecticides, insecticide rotation with different modes of action and nonchemical control methods are among the countermeasures of insecticide resistance management for this pest. In the current review, we concentrate on insecticide resistance and resistance management of B. tabaci, focusing on reports published mainly over the past 10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad M, Khan RA (2017) Field-evolved resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to carbodiimide and neonicotinoids in Pakistan. J Econ Entomol 110:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Arif MI, Naveed M (2010) Dynamics of resistance to organophosphate and carbamate insecticides in the cotton whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Pakistan. J Pest Sci 83:409–420

    Article  Google Scholar 

  • Alomar O, Riudavets J, Castañe C (2006) Macrolophus caliginosus in the biological control of Bemisia tabaci on greenhouse melons. Biol Control 36:154–162

    Article  Google Scholar 

  • Alon M, Alon F, Nauen R, Morin S (2008) Organophosphates’ resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. Insect Biochem Mol Biol 38:940–949

    Article  CAS  PubMed  Google Scholar 

  • Anwar W, Ali S, Nawaz K, Iftikhar S, Javed MA, Hashem A, Alqarawi AA, Abd Allah EF, Akhter A (2018) Entomopathogenic fungus Clonostachys rosea as a biocontrol agent against whitefly (Bemisia tabaci). Biocontrol Sci Technol 28:750–760

    Article  Google Scholar 

  • Arnó J, Castañé C, Riudavets J, Gabarra R (2010) Risk of damage to tomato crops by the generalist zoophytophagous predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae). Bull Entomol Res 100:105–115

    Article  PubMed  CAS  Google Scholar 

  • Baldin ELL, Crotti AEM, Wakabayashi KAL, Silva JPGF, Aguiar GP, Souza ES, Veneziani RCS, Groppo M (2013) Plant-derived essential oils affecting settlement and oviposition of Bemisia tabaci (Genn.) biotype B on tomato. J Pest Sci 86:301–308

    Article  Google Scholar 

  • Basit M (2019) Status of insecticide resistance in Bemisia tabaci: resistance, cross-resistance, stability of resistance, genetics and fitness costs. Phytoparasitica 47:207–225

    Article  CAS  Google Scholar 

  • Basit M, Saeed S, Saleem MA, Denholm I, Shah M (2013) Detection of resistance, cross-resistance, and stability of resistance to new chemistry insecticides in Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 106:1414–1422

    Article  CAS  PubMed  Google Scholar 

  • Bass C, Schroeder I, Turberg A, Field LM, Williamson MS (2004) Identification of mutations associated with pyrethroid resistance in the para-type sodium channel of the cat flea, Ctenocephalides felis. Insect Biochem Mol Biol 34:1305–1313

    Article  CAS  PubMed  Google Scholar 

  • Bass C, Denholm I, Williamson MS, Nauen R (2015) The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem Physiol 121:78–87

    Article  CAS  PubMed  Google Scholar 

  • Bedford ID, Briddon RW, Brown JK, Rosell RC, Markham PG (1994) Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Ann Appl Biol 125:311–325

    Article  Google Scholar 

  • Bielza P, Moreno I, Belando A, Grávalos C, Izquierdo J, Nauen R (2019) Spiromesifen and spirotetramat resistance in field populations of Bemisia tabaci Gennadius in Spain. Pest Manag Sci 75:45–52

    Article  CAS  PubMed  Google Scholar 

  • Boykin LM, De Barro PJ (2014) A practical guide to identifying members of the Bemisia tabaci species complex: and other morphologically identical species. Front Ecol Evol 45:1–5

    Google Scholar 

  • Boykin LM, Shatters RG Jr, Rosell RC, McKenzie CL, Bagnall RN, De Barro P, Frohlich DR (2007) Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol Phylogenet Evol 44:1306–1319

    Article  CAS  PubMed  Google Scholar 

  • Boykin LM, Armstrong KF, Kubatko L, De Barro P (2012) Species delimitation and global biosecurity. Evol Bioinform 8:1–37

    Article  Google Scholar 

  • Bretschneider T, Benet-Buchhol J, Fischer R, Nauen R (2003) Spirodiclofen and spiromesifen—novel acaricidal and insecticidal tetronic acid derivatives with a new mode of action. Chimia 57:697–701

    Article  CAS  Google Scholar 

  • Briddon RW (2003) Cotton leaf curl disease, a multicomponent begomovirus complex. Mol Plant Pathol 4:427–434

    Article  CAS  PubMed  Google Scholar 

  • Brown JK, Frohlich DR, Rosell RC (1995) The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annu Rev Entomol 40:511–534

    Article  CAS  Google Scholar 

  • Brück E, Elbert A, Fischer R et al (2009) Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: biological profile and field performance. Crop Prot 28:838–844

    Article  CAS  Google Scholar 

  • Byrne DN, Bellows TS Jr (1991) Whitefly biology. Annu Rev Entomol 36:431–457

    Article  Google Scholar 

  • Byrne FJ, Devonshire AL (1991) In vivo inhibition of esterase and acetylcholinesterase activities by profenofos treatments in the tobacco whitefly Bemisia tabaci (Genn)—implications for routine biochemical monitoring of these enzymes. Pestic Biochem Physiol 40:198–204

    Article  CAS  Google Scholar 

  • Byrne FJ, Devonshire AL (1993) Insensitive acetylcholinesterase and esterase polymorphism in susceptible and resistant populations of the tobacco whitefly Bemisia tabaci (Genn). Pestic Biochem Physiol 45:34–42

    Article  CAS  Google Scholar 

  • Byrne FJ, Devonshire AL (1997) Kinetics of insensitive acetylcholinesterases in organophosphate-resistant tobacco whitefly, Bemisia tabaci (Gennadius) Homoptera: Aleyrodidae). Pestic Biochem Physiol 58:119–124

    Article  CAS  Google Scholar 

  • Byrne FJ, Cahill M, Denholm I, Devonshire AL (1994) A biochemical and toxicological study of the role of insensitive acetylcholinesterase in organophosphorus resistant Bemisia tabaci (Homoptera: Aleyrodidae) from Israel. Bull Entomol Res 84:179–184

    Article  CAS  Google Scholar 

  • Byrne FJ, Castle S, Prabhaker N, Toscano N (2003) Biochemical study of resistance to imidacloprid in B biotype Bemisia tabaci from Guatemala. Pest Manag Sci 59:347–352

    Article  CAS  PubMed  Google Scholar 

  • Caballero R, Cyman S, Schuster DJ (2013) Monitoring insecticide resistance in biotype B of Bemisia tabaci (Hemiptera: Aleyrodidae) in Florida. Fla Entomol 96:1243–1256

    Article  Google Scholar 

  • Cahill M, Byrne FJ, Gorman K, Denholm I, Devonshire AL (1995) Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Bull Entomol Res 85:181–187

    Article  CAS  Google Scholar 

  • Cahill M, Denholm I, Byrne FJ, Devonshire AL (1996) Insecticide resistance in Bemisia tabaci—current status and implications for management. In: Proceedings of Brighton crop protection conference—pests and diseases, November 18–21 1996. British Crop Protection Council, Farnham, Brighton, UK, pp 75–80

  • Calvo FJ, Bolckmans K, Belda JE (2009) Development of a biological control-based integrated pest management method for Bemisia tabaci for protected sweet pepper crops. Entomol Exp Appl 133:9–18

    Article  CAS  Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2012) Biological control-based IPM in sweet pepper greenhouses using Amblyseius swirskii (Acari: Phytoseiidae). Biocontrol Sci Technol 22:1398–1416

    Article  Google Scholar 

  • Castle SJ, Prabhaker N (2013) Monitoring changes in Bemisia tabaci (Hemiptera: Aleyrodidae) susceptibility to neonicotinoid insecticides in Arizona and California. J Econ Entomol 106:1404–1413

    Article  CAS  PubMed  Google Scholar 

  • Castle SJ, Toscano NC, Prabhaker N, Henneberry TJ, Palumbo JC (2002) Field evaluation of different insecticide use strategies as resistance management and control tactics for Bemisia tabaci (Hemiptera: Aleyrodidae). Bull Entomol Res 92:449–460

    Article  CAS  PubMed  Google Scholar 

  • Castle SJ, Palumbo JC, Prabhaker N, Horowitz AR, Denholm I (2010) Ecological determinants of Bemisia tabaci resistance to insecticides. In: Stansly PA, Naranjo SE (eds) Bemisia: bionomics and management of a global pest. Springer, Dordrecht, pp 423–465

    Google Scholar 

  • Chiel E, Steinberg S, Messika Y, Antignus Y (2006) The effect of UV-absorbing plastic sheet on the attraction and host location ability of three parasitoids: Aphidius colemani, Diglyphus isaea and Eretmocerus mundus. Biocontrol 51:65–78

    Article  Google Scholar 

  • Chu D, Wan FH, Zhang YJ, Brown JK (2010) Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environ Entomol 39:1028–1036

    Article  PubMed  Google Scholar 

  • Chung IH, Kang S, Kim YR, Kim JH, Jung JW, Lee S, Lee SH, Hwang SY (2011) Development of a low-density DNA microarray for diagnosis of target-site mutations of pyrethroid and organophosphate resistance mutations in the whitefly Bemisia tabaci. Pest Manag Sci 67(12):1541–1548

    Article  CAS  PubMed  Google Scholar 

  • Cloyd RA (2010) Pesticide mixtures and rotations: are these viable resistance mitigating strategies. Pest Technol 4:14–18

    Google Scholar 

  • Costa HS, Brown JK, Sivasupramaniam S, Bird J (1993) Regional distribution, insecticide resistance, and reciprocal crosses between the A and B biotypes of Bemisia tabaci. Insect Sci Appl 14:255–266

    Google Scholar 

  • Crowder DW, Ellers-Kirk C, Yafuso C, Dennehy TJ, Degain BA, Harpold VS, Tabashnik BE, Carrière Y (2008) Inheritance of resistance to pyriproxyfen in Bemisia tabaci (Hemiptera: Aleyrodidae) males and females (B biotype). J Econ Entomol 101:927–932

    Article  CAS  PubMed  Google Scholar 

  • Crowder DW, Horowitz AR, Breslauer H, Rippa M, Kontsedalov S, Ghanim M, Carrière Y (2011) Niche partitioning and stochastic processes shape community structure following whitefly invasions. Basic Appl Ecol 12:685–694

    Article  Google Scholar 

  • Crowder D, Ellsworth P, Naranjo S, Tabashnik B, Carrie’re Y (2013) Modeling resistance to juvenile hormone analogs: linking evolution, ecology, and management. In: Devillers J (ed) Juvenile hormones and juvenoids: modeling biological effects and environmental fate. CRC Press, Boca Raton, pp 99–126

    Chapter  Google Scholar 

  • Cruz-Estrada A, Ruiz-Sánchez E, Cristóbal-Alejo J, González-Coloma A, Andrés MF, Gamboa-Angulo M (2019) Medium-chain fatty acids from Eugenia winzerlingii leaves causing insect settling deterrent, nematicidal, and phytotoxic effects. Molecules 24:1724

    Article  CAS  PubMed Central  Google Scholar 

  • Cuthbertson AGS, Walters KFA (2005) Pathogenicity of the entomopathogenic fungus, Lecanicillium muscarium, against the sweetpotato whitefly Bemisia tabaci under laboratory and glasshouse conditions. Mycopathologia 160:315–319

    Article  PubMed  Google Scholar 

  • Dângelo RAC, Michereff-Filho M, Campos MR, da Silva PS, Guedes RNC (2018) Insecticide resistance and control failure likelihood of the whitefly Bemisia tabaci (MEAM1; B biotype): a neotropical scenario. Ann Appl Biol 172:88–99

    Article  CAS  Google Scholar 

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale A (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19

    Article  PubMed  CAS  Google Scholar 

  • Deletre E, Chandre F, Barkman B, Menut C, Martin T (2016) Naturally occurring bioactive compounds from four repellent essential oils against Bemisia tabaci whiteflies. Pest Manag Sci 72:179–189

    Article  CAS  PubMed  Google Scholar 

  • Denholm I, Rowland MW (1992) Tactics for managing pesticide resistance in arthropods: theory and practice. Annu Rev Entomol 37:91–112

    Article  CAS  PubMed  Google Scholar 

  • Denholm I, Cahill M, Byrne FJ, Devonshire AL (1996) Progress with documenting and combating insecticide resistance in Bemisia. In: Gerling D, Mayer RT (eds) Bemisia: 1995 taxonomy, biology, damage, control and management. Intercept Ltd Andover, Hants, pp 577–603

    Google Scholar 

  • Denholm I, Cahill M, Dennehy TJ, Horowitz AR (1998) Challenges with managing insecticide resistance in agricultural pests, exemplified by the whitefly, Bemisia tabaci. Philos Trans R Soc Ser B 353:1757–1767

    Article  CAS  Google Scholar 

  • Dennehy TJ, Williams L (1997) Management of resistance in Bemisia in Arizona cotton. Pestic Sci 51:398–406

    Article  CAS  Google Scholar 

  • Dennehy TJ, Degain BA, Harpold VS, Brown JK, Morin S, Fabrick JA, Byrne FJ, Nichols RL (2005) New challenges to management of whitefly resistance to insecticides in Arizona. University of Arizona, Tucson

    Google Scholar 

  • Dennehy TJ, Degain BA, Harpold VS, Zaborac M, Morin S, Fabrick JA, Nichols RL, Brown JK, Byrne FJ, Li XC (2010) Extraordinary resistance to insecticides reveals exotic Q biotype of Bemisia tabaci in the new world. J Econ Entomol 103:2174–2186

    Article  CAS  PubMed  Google Scholar 

  • Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P (2010) Refined global analysis of Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyroidea) mitochondrial CO1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208

    Article  Google Scholar 

  • Dittrich V, Ernst GH, Ruesch O, Uk S (1990) Resistance mechanisms in sweetpotato whitefly (Homoptera, Aleyrodidae) populations from Sudan, Turkey, Guatemala, and Nicaragua. J Econ Entomol 83:1665–1670

    Article  CAS  Google Scholar 

  • do Nascimento Silva J, Mascarin GM, de Paula Vieira de Castro R, Castilho LR, Freire DMG (2019) Novel combination of a biosurfactant with entomopathogenic fungi enhances efficacy against Bemisia whitefly. Pest Manag Sci. https://doi.org/10.1002/ps.5458

    Article  PubMed  Google Scholar 

  • Drabo SF, Gnankine O, Imael HN, Bassolé R, Charles N, Mouton L (2017) Susceptibility of MED-Q1 and MED-Q3 biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) populations to essential and seed oils. J Econ Entomol 110:1031–1038

    Article  CAS  Google Scholar 

  • Elbert A, Nauen R, Leicht W (1998) Imidacloprid, a novel chloronicotinyl insecticide: biological activity and agricultural importance. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin, pp 50–73

    Chapter  Google Scholar 

  • Ellsworth PC, Tronstad R, Leser J, Goodell PB, Godfrey LD, Henneberry TJ, Hendrix D, Brushwood D, Naranjo SE, Castle S, Nichols RL (1999) Sticky cotton sources and solutions. IPM Series No. 13. The University of Arizona Cooperative Extension. Publ. #AZ1156. Tucson, p 4. http://ag.arizona.edu/crops/cotton/insects/wf/stickycss.pdf

  • Ellsworth PC, Li X, Dennehy TJ, Palumbo JC, Castle S, Prabhaker N, Nichols RL (2013) Is monitoring susceptibility of Bemisia tabaci to insecticides useful to management? In: First international whitefly symposium, 20–24 May, Kolymbari, Crete, Greece

  • Erdogan C, Moores GD, Gurkan MO, Gorman KJ, Denholm I (2008) Insecticide resistance and biotype status of populations of the tobacco whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Turkey. Crop Prot 27:600–605

    Article  CAS  Google Scholar 

  • FAO (2012) Guidelines on prevention and management of pesticide resistance. International code of conduct on the distribution and use of pesticides, p 52

  • Farghaly S (2010a) Identification of mutations in the Bemisia tabaci (Genn.) para sodium cannel gene associated with resistance to pyrethroids. Egypt J Agric Res. 88:153–165

    Google Scholar 

  • Farghaly S (2010b) Biochemical monitoring for resistance in the whitefly Bemisia tabaci. Am Euroasian J Agric Environ Sci 8:383–389

    CAS  Google Scholar 

  • Feng Y, Wu Q, Wang S, Chang X, Xie W, Xu B, Zhang Y (2010) Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 66:313–318

    Article  CAS  PubMed  Google Scholar 

  • Fernandez E, Gravalos C, Javier Haro P, Cifuentes D, Bielza P (2009) Insecticide resistance status of Bemisia tabaci Q-biotype in southeastern Spain. Pest Manag Sci 66:885–891

    Article  CAS  Google Scholar 

  • Foltyn S, Gerling D (1985) The parasitoids of the aleyrodid Bemisia tabaci in Israel: development, host preference and discrimination of the aphelinid wasp Eretmocerus mundus. Entomol Exp Appl 38:255–260

    Article  Google Scholar 

  • Gao T, Wang Z, Huang Y, Keyhani NO, Huang Z (2017) Lack of resistance development in Bemisia tabaci to Isaria fumosorosea after multiple generations of selection. Sci Rep 7:42727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido-Jurado I, Resquín-Romero G, Amarilla SP, Ríos-Moreno A, Carrasco L, Quesada-Moraga E (2017) Transient endophytic colonization of melon plants by entomopathogenic fungi after foliar application for the control of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). J Pest Sci 90:319–330

    Article  Google Scholar 

  • Georghiou GP (1994) Principles of insecticide resistance management. Phytoprotection 75:51–59

    Article  Google Scholar 

  • Georghiou GP, Lagunes-Tejeda A (1991) The occurrence of resistance to pesticides in arthropods: an index of cases reported through 1980. In: FAO plant production and protection series

  • Gerling D, Horowitz AR (1984) Yellow traps for evaluating the population levels and dispersal patterns of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Ann Entomol Soc Am 77:753–759

    Article  Google Scholar 

  • Gerling D, Alomar Ò, Arnó J (2001) Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot 20:779–799

    Article  Google Scholar 

  • Ghanim M, Kontsedalov S (2007) Gene expression in pyriproxyfen-resistant Bemisia tabaci Q biotype. Pest Manag Sci 63(8):776–783

    Article  CAS  PubMed  Google Scholar 

  • Ghanim M, Kontsedalov S, Czosnek H (2007) Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochem Mol Biol 37:732–738

    Article  CAS  PubMed  Google Scholar 

  • Gorman K, Slater R, Blande JD, Clarke A, Wren J, McCaffery A, Denholm I (2010) Cross-resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 66:1186–1190

    Article  CAS  PubMed  Google Scholar 

  • Gravalos C, Fernandez E, Belando A, Moreno I, Ros C, Bielza P (2015) Cross-resistance and baseline susceptibility of Mediterranean strains of Bemisia tabaci to cyantraniliprole. Pest Manag Sci 71:1030–1036

    Article  CAS  PubMed  Google Scholar 

  • Greer L, Dole JM (2003) Aluminum foil, aluminium-painted, plastic, and degradable mulches increase yields and decrease insect-vectored viral diseases of vegetables. Horttechnology 13:276–284

    Article  Google Scholar 

  • Guirao P, Beitia F, Cenis JL (1997) Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bull Entomol Res 87:587–593

    Article  Google Scholar 

  • Heinz KM, Nelson JM (1996) Interspecific interactions among natural enemies of Bemisia in an inundative biological control program. Biol Control 6:384–393

    Article  Google Scholar 

  • Henneberry TJ, Faust RM (2008) Introduction. In: Gould J et al (eds) Classical biological control of Bemisia tabaci in the United States. Springer, Berlin

    Google Scholar 

  • Hequet E, Henneberry TJ, Nichols RL (eds) (2007) Sticky cotton: causes, effects, and prevention. USDA-ARS Technical Bulletin No 1915

  • Hilje L, Stansly PA (2008) Living ground covers for management of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and tomato yellow mottle virus (ToYMoV) in Costa Rica. Crop Prot 27:10–16

    Article  Google Scholar 

  • Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    Article  CAS  PubMed  Google Scholar 

  • Horowitz AR, Ishaaya I (1996) Chemical control of Bemisia tabaci—management and application. In: Gerling D, Mayer RT (eds) Bemisia: 1995 taxonomy, biology, damage, control and management. Intercept Ltd Andover, Hants, pp 537–556

    Google Scholar 

  • Horowitz AR, Ishaaya I (2014) Dynamics of biotypes B and Q of the whitefly Bemisia tabaci and its impact on insecticide resistance. Pest Manag Sci 70:1568–1572

    Article  CAS  PubMed  Google Scholar 

  • Horowitz AR, Forer G, Ishaaya I (1994) Managing resistance in Bemisia tabaci in Israel with emphasis on cotton. Pestic Sci 42:113–122

    Article  CAS  Google Scholar 

  • Horowitz AR, Mendelson Z, Weintraub PG, Ishaaya I (1998) Comparative toxicity of foliar and systemic applications of two chloronicotinyl insecticides, acetamiprid and imidacloprid, against the cotton whitefly, Bemisia tabaci. Bull Entomol Res 88:437–442

    Article  CAS  Google Scholar 

  • Horowitz AR, Kontsedalov S, Denholm I, Ishaaya I (2002) Dynamics of insecticide resistance in Bemisia tabaci—a case study with an insect growth regulator. Pest Manag Sci 58:1096–1100

    Article  CAS  PubMed  Google Scholar 

  • Horowitz AR, Denholm I, Gorman K, Cenis JL, Kontsedalov S, Ishaaya I (2003) Biotype Q of Bemisia tabaci identified in Israel. Phytoparasitica 31:94–98

    Article  Google Scholar 

  • Horowitz AR, Kontsedalov S, Ishaaya I (2004) Dynamics of resistance to the neonicotinoids acetamiprid and thiamethoxam in Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 97:2051–2056

    Article  CAS  PubMed  Google Scholar 

  • Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch Insect Biochem Physiol 58:216–225

    Article  CAS  PubMed  Google Scholar 

  • Horowitz R, Denholm I, Morin S (2007) Resistance to insecticides in the TYLCV vector, Bemisia tabaci. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 305–325

    Chapter  Google Scholar 

  • Horowitz AR, Antignus Y, Gerling D (2011) Management of Bemisia tabaci Whiteflies. In: Thompson WMO (ed) The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-infected host plants. Springer, Dordrecht, pp 293–322

    Chapter  Google Scholar 

  • Hu J, Zhang X, Jiang Z, Zhang F, Liu Y, Li Z, Zhang Z (2017) New putative cryptic species detection and genetic network analysis of Bemisia tabaci (Hempitera: Aleyrodidae) in China based on mitochondrial COI sequences. Mitochondrial DNA Part A 29:474–484

    Article  CAS  Google Scholar 

  • Ilias A, Lagnel J, Kapantaidaki DE, Roditakis E, Tsigenopoulos CS, Vontas J, Tsagkarakou A (2015) Transcription analysis of neonicotinoid resistance in Mediterranean (MED) populations of B. tabaci reveal novel cytochrome P450s, but no nAChR mutations associated with the phenotype. BMC Genom 16:939

    Article  CAS  Google Scholar 

  • Ishaaya I, Horowitz AR (1995) Pyriproxyfen, a novel insect growth regulator for controlling whiteflies: mechanism and resistance management. Pestic Sci 43:227–232

    Article  CAS  Google Scholar 

  • Jaber LR, Araj SE, Qasem JR (2018) Compatibility of endophytic fungal entomopathogens with plant extracts for the management of sweetpotato whitefly Bemisia tabaci Gennadius (Homoptera: Aleyrodidae). Biol Control 117:164–171

    Article  Google Scholar 

  • Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908

    Article  CAS  PubMed  Google Scholar 

  • Jeschke P, Nauen R, Gutbrod O, Beck ME, Mathiesen S, Haas M, Velten R (2015) Flupyradifurone (Sivanto™) and its novel butenolide pharmacophore: structural considerations. Pestic Biochem Physiol 121:21–38

    Article  CAS  Google Scholar 

  • Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219

    Article  Google Scholar 

  • Karunker I, Benting J, Lueke B, Ponge T, Nauen R, Roditakis E, Vontas J, Gorman K, Denholm I, Morin S (2008) Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem Mol Biol 38:634–644

    Article  CAS  PubMed  Google Scholar 

  • Karunker I, Morou E, Nikou D, Nauen R, Sertchook R, Stevenson BJ, Paine MJ, Morin S, Vontas J (2009) Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. Insect Biochem Mol Biol 39(10):697–706

    Article  CAS  PubMed  Google Scholar 

  • Kim SI, Chae SH, Youn HS, Yeon SH, Ahn YJ (2011) Contact and fumigant toxicity of plant essential oils and efficacy of spray formulations containing the oils against B- and Q-biotypes of Bemisia tabaci. Pest Manag Sci 67:1093–1099

    CAS  PubMed  Google Scholar 

  • Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792

    Article  CAS  PubMed  Google Scholar 

  • Kontsedalov S, Gottlieb Y, Ishaaya I, Nauen R, Horowitz R, Ghanim M (2009) Toxicity of spiromesifen to the developmental stages of Bemisia tabaci biotype B. Pest Manag Sci 65:5–13

    Article  CAS  PubMed  Google Scholar 

  • Kontsedalov S, Abu-Moch F, Lebedev G, Czosnek H, Horowitz AR, Ghanim M (2012) Bemisia tabaci biotype dynamics and resistance to insecticides in Israel during the years 2008–2010. J Integr Agric 11:312–320

    Article  CAS  Google Scholar 

  • Lacey LA, Kirk AA, Millar L, Mercadier G, Vidal C (1999) Ovicidal and larvicidal activity of conidia and blastospores of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) against Bemisia argentifolii (Homoptera: Aleyrodidae) with a description of a bioassay system allowing prolonged survival of control insects. Biocontrol Sci Technol 9:9–18

    Article  Google Scholar 

  • Lahm GP, Cordova D, Barry JD (2009) New and selective ryanodine receptor activators for insect control. Bioorg Med Chem 17:4127–4133

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Yoon KS, Williamson MS, Goodson SJ, Takano-Lee M, Edman JD et al (2000) Molecular analysis of kdr-like resistance in permethrin-resistant strains of head lice, Pediculus capitis. Pestic Biochem Physiol 66:130–143

    Article  CAS  Google Scholar 

  • Legg JP, Shirima R, Tajebe LS, Guastella D, Boniface S, Jeremiah S, Nsami E, Chikoti P, Rapisarda C (2014) Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa. Pest Manag Sci 70:1446–1453

    Article  CAS  PubMed  Google Scholar 

  • Li X, Degain BA, Harpold VS, Marçon PG, Nichols RL, Fournier AJ, Naranjo SE, Palumbo JC, Ellsworth PC (2012) Baseline susceptibilities of B- and Q-biotype Bemisia tabaci to anthranilic diamides in Arizona. Pest Manag Sci 68:83–91

    Article  CAS  PubMed  Google Scholar 

  • Li HR, Pan HP, Tao YL, Zhang YJ, Chu D (2017) Population genetics of an alien whitefly in China: implications for its dispersal and invasion success. Sci Rep 7:2228. https://doi.org/10.1038/s41598-017-02433-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SS, Colvin J, De Barro PJ (2012) Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? J Integr Agric 11:176–186

    Article  Google Scholar 

  • Lu Y, Bei Y, Zhang J (2012) Are yellow sticky traps an effective method for control of sweetpotato whitefly, Bemisia tabaci, in the greenhouse or field? J Insect Sci 12:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo C, Jones CM, Zhang F, Denholm I, Gorman K (2010) Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Prot 29:429–434

    Article  CAS  Google Scholar 

  • Luo Y, Chen Q, Luan J, Chung SH, Van Eck J, Turgeon R, Douglas AE (2017) Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci. Insect Biochem Mol Biol 88:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Gorman KJ, Devine GJ, Luo W, Denholm I (2007) The biotype and insecticide-resistance status of whiteflies, Bemisia tabaci (Hemiptera: Aleyrodidae), invading cropping systems in Xinjiang Uygur Autonomous Region, northwestern China. Crop Prot 26:612–617

    Article  CAS  Google Scholar 

  • Ma W, Li X, Dennehy TJ, Lei C, Wang M, Degain BA, Nichols RL (2010) Pyriproxyfen resistance of Bemisia tabaci (Homoptera: Aleyrodidae) biotype B: metabolic mechanism. J Econ Entomol 103:158–165

    Article  CAS  PubMed  Google Scholar 

  • Malik HJ, Raza A, Amin I, Scheffler JA, Scheffler BE, Brown JK, Mansoor S (2016) RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants. Sci Rep 6:38469. https://doi.org/10.1038/srep38469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie CL, Bethke JA, Byrne FJ, Chamberlin JR, Dennehy TJ, Dickey AM, Gilrein D, Hall PM, Ludwig S, Oetting RD, Osborne LS, Schmale L, Shatters RG Jr (2012) Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in North America after the Q invasion. J Econ Entomol 105:753–766

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Zhu C, Feng Y, Li W, Shao X, Xu Z, Chemg J, Li Z (2016) Computational insights into the different resistance mechanism of imidacloprid versus dinotefuran in Bemisia tabaci. J Agric Food Chem 64:1231–1238

    Article  CAS  PubMed  Google Scholar 

  • Monci F, García-Andrés S, Sánchez F, Moriones E, Espí E, Salmerón A (2004) Tomato yellow leaf curl disease control with UV-blocking plastic covers in commercial plastichouses of Southern Spain. In: Acta Hortic. International Society for Horticultural Science, pp 537–542

  • Monci F, García-Andrés S, Sánchez-Campos S, Fernández-Muñoz R, Díaz-Pendón JA, Moriones E (2019) Use of systemic acquired resistance and whitefly optical barriers to reduce tomato yellow leaf curl disease damage to tomato crops. Plant Dis 103:1181–1188

    Article  PubMed  Google Scholar 

  • Morin S, Williamson MS, Goodson SJ, Brown JK, Tabashnik BE, Dennehy TJ (2002) Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochem Mol Biol 32:1781–1791

    Article  CAS  PubMed  Google Scholar 

  • Mota-Sanchez D, Wise JC (2019) The arthropod pesticide resistance database. Michigan State University. http://www.pesticideresistance

  • Naranjo SE, Akey DH (2005) Conservation of natural enemies in cotton: comparative selectivity of acetamiprid in the management of Bemisia tabaci. Pest Manag Sci 61:555–566

    Article  CAS  PubMed  Google Scholar 

  • Naranjo SE, Ellsworth PC (2009a) Fifty years of the integrated control concept: moving the model and implementation forward in Arizona. Pest Manag Sci 65:1267–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naranjo SE, Ellsworth PC (2009b) The contribution of conservation biological control to integrated management of Bemisia tabaci in cotton. Biol Con 51:458–470

    Article  Google Scholar 

  • Naranjo SE, Ellsworth PC, Chu CC, Henneberry TJ (2002) Conservation of predatory arthropods in cotton: role of action thresholds for Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 95:682–691

    Article  CAS  PubMed  Google Scholar 

  • Naranjo SE, Ellsworth PC, Hagler JR (2004) Conservation of natural enemies in cotton: role of insect growth regulators in management of Bemisia tabaci. Biol Control 30:52–72

    Article  CAS  Google Scholar 

  • Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58:200–215

    Article  CAS  PubMed  Google Scholar 

  • Nauen R, Konanz S (2005) Spiromesifen as a new chemical option for resistance management in whiteflies and spider mites. Pflanzenschutz-Nachr Bayer 58:485–502

    CAS  Google Scholar 

  • Nauen R, Steinbach D (2016) Resistance to diamide insecticides in lepidopteran pests. In: Horowitz AR, Ishaaya I (eds) Advances in insect control and resistance management. Springer, Berlin, pp 219–240

    Chapter  Google Scholar 

  • Nauen R, Stumpf N, Elbert A (2002) Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 58:868–875

    Article  CAS  PubMed  Google Scholar 

  • Nauen R, Schnorbach HJ, Elbert A (2005) The biological profile of spiromesifen (Oberon®)—a new tetronic acid insecticide/acaricide. Pflanzenschutz -Nachr Bayer 58:417–440

    CAS  Google Scholar 

  • Nauen R, Vontas J, Kaussmann M, Wölfel K (2013) Pymetrozine is hydroxylated by CYP6CM1, a cytochrome P450 conferring neonicotinoid resistance in Bemisia tabaci. Pest Manag Sci 69:457–461

    Article  CAS  PubMed  Google Scholar 

  • Nauen R, Jeschke P, Velten R, Beck ME, Ebbinghaus-Kintscher U, Thielert W, Wölfel K, Haas M, Kunz K, Raupach G (2015a) Flupyradifurone: a brief profile of a new butenolide insecticide. Pest Manag Sci 71:850–862

    Article  CAS  PubMed  Google Scholar 

  • Nauen R, Wölfel K, Lueke B, Myridakis A, Tsakireli D, Roditakis E, Tsagkarakou A, Stephanou E, Vontas J (2015b) Development of a lateral flow test to detect metabolic resistance in Bemisia tabaci mediated by CYP6CM1, a cytochrome P450 with broad spectrum catalytic efficiency. Pestic Biochem Physiol 121:3–11

    Article  CAS  PubMed  Google Scholar 

  • Naveen NC, Chaubey R, Kumar D, Rebijith KB, Rajagopal R, Subrahmanyam B, Subramanian S (2017) Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Sci Rep 7:40634. https://doi.org/10.1038/srep40634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25:271–291

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MRV, Henneberry TJ, Anderson P (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot 20:709–723

    Article  Google Scholar 

  • Palumbo JC, Horowitz AR, Prabhaker N (2001) Insecticidal control and resistance management for Bemisia tabaci. Crop Prot 20:739–765

    Article  CAS  Google Scholar 

  • Parrella G, Scassillo L, Giorgini M (2012) Evidence for a new genetic variant in the Bemisia tabaci species complex and the prevalence of the biotype Q in southern Italy. J Pest Sci 85:227–238

    Article  Google Scholar 

  • Perring TM (2001) The Bemisia tabaci species complex. Crop Prot 20:725–737

    Article  Google Scholar 

  • Perring TM, Cooper DA, Rodriguez RJ, Farrar CA, Bellows TS (1993) Identification of a whitefly species by genomic and behavioral studies. Science 259:74–77

    Article  CAS  PubMed  Google Scholar 

  • Prabhaker N, Castle SJ, Buckelew L, Toscano NC (2008) Baseline susceptibility of Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) populations from California and Arizona to spiromesifen. J Econ Entomol 101:174–181

    Article  CAS  PubMed  Google Scholar 

  • Prieto-Ruiz I, Garzo E, Moreno A, Dáder B, Medina P, Viñuela E, Fereres A (2019) Supplementary UV radiation on eggplants indirectly deters Bemisia tabaci settlement without altering the predatory orientation of their biological control agents Nesidiocoris tenuis and Sphaerophoria rueppellii. J Pest Sci 92:1057–1070

    Article  Google Scholar 

  • Qiu YT, van Lenteren JC, Drost YC, Posthuma-Doodeman CJAM (2004) Life-history parameters of Encarsia formosa, Eretmocerus eremicus and E. mundus, aphelinid parasitoids of Bemisia argentifolii (Hemiptera: Aleyrodidae). Eur J Entomol 101:83–94

    Article  Google Scholar 

  • Rajasri M, Prasada Rao RDVJ, Vijaya Lakshmi K, Loka Reddy K (2011) Effect of different mulches on the incidence of Tomato leaf curl virus and its vector whitefly Bemisia tabaci in tomato. In: Acta Hort. International Society for Horticultural Science, pp 215–221

  • Rauch N, Nauen R (2003) Identification of biochemical markers linked to neonicotinoid cross-resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Arch Insect Biochem Physiol 54:165–176

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Malik HJ, Shafiq M, Amin I, Scheffler JA, Scheffler BE, Mansoor S (2016) RNA interference based approach to down regulate osmoregulators of whitefly (Bemisia tabaci): potential technology for the control of whitefly. PLoS ONE 11(4):e0153883. https://doi.org/10.1371/journal.pone.0153883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roditakis E, Roditakis NE, Tsagkarakou A (2005) Insecticide resistance in Bemisia tabaci (Homoptera: Aleyrodidae) populations from Crete. Pest Manag Sci 61:577–582

    Article  CAS  PubMed  Google Scholar 

  • Roditakis E, Tsagkarakou A, Vontas J (2006) Identification of mutations in the para sodium channel of Bemisia tabaci from Crete, associated with resistance to pyrethroids. Pestic Biochem Physiol 85:161–166

    Article  CAS  Google Scholar 

  • Roditakis E, Grispou M, Morou E, Kristoffersen JB, Roditakis N, Nauen R, Vontas J, Tsagkarakou A (2009) Current status of insecticide resistance in Q biotype Bemisia tabaci populations from Crete. Pest Manag Sci 65:313–322

    Article  CAS  PubMed  Google Scholar 

  • Roditakis E, Morou E, Tsagkarakou A, Riga M, Nauen R, Paine M, Morin S, Vontas J (2011) Assessment of the Bemisia tabaci CYP6CM1vQ transcript and protein levels in laboratory and field-derived imidacloprid-resistant insects and cross-metabolism potential of the recombinant enzyme. Insect Sci 18:23–29

    Article  CAS  Google Scholar 

  • Rodríguez E, González M, Paredes D, Campos M, Benítez E (2018) Selecting native perennial plants for ecological intensification in Mediterranean greenhouse horticulture. Bull Entomol Res 108:694–704

    Article  PubMed  Google Scholar 

  • Roy D, Bhattacharjee T, Biswas A et al (2019) Resistance monitoring for conventional and new chemistry insecticides on Bemisia tabaci genetic group Asia-I in major vegetable crops from India. Phytoparasitica 47:55–66

    Article  CAS  Google Scholar 

  • Şahin I, İkten C (2017) Neonicotinoid resistance in Bemisia tabaci (Genn., 1889) (Hemiptera: Aleyrodidae) populations from Antalya, Turkey. Türk Entomol Derg 41:169–175

    Article  Google Scholar 

  • Sanchez-Campos S, Navas-Castillo J, Camero R, Soria C, Diaz JA, Moriones E (1999) Displacement of tomato yellow leaf curl virus (TYLCV-Sr) by TYLCV-Is in tomato epidemics in Spain. Phytopathol 89:1038–1043

    Article  CAS  Google Scholar 

  • Santos TTMD, Quintela ED, Mascarin GM, Santana MV (2018) Enhanced mortality of Bemisia tabaci nymphs by Isaria javanica combined with sublethal doses of chemical insecticides. J Appl Entomol 142:598–609

    Article  CAS  Google Scholar 

  • Satar G, Ulusoy MR, Nauen R, Dong K (2018) Neonicotinoid insecticide resistance among populations of Bemisia tabaci in the Mediterranean region of Turkey. Bull Insectol 71:171–177

    Google Scholar 

  • Sattelle DB, Cordova D, Cheek TR (2008) Insect ryanodine receptors: molecular targets for novel pest control chemicals. Invertebr Neurosci 8:107–119

    Article  CAS  Google Scholar 

  • Schuler TH, Martinez-Torres D, Thompson AJ, Denholm I, Devonshire AL, Duce IR et al (1998) Toxicological, electrophysiological, and molecular characterisation of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pestic Biochem Physiol 59:169–182

    Article  CAS  Google Scholar 

  • Schuster DJ, Mann RS, Toapanta M, Cordero R, Thompson S, Cyman S, Shurtleff A, Morris Ii RF (2010) Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. Pest Manag Sci 66:186–195

    CAS  PubMed  Google Scholar 

  • Silva LD, Omoto C, Bleicher E, Dourado PM (2009) Monitoring the susceptibility to insecticides in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations from Brazil. Neotrop Entomol 38:116–125

    Article  CAS  Google Scholar 

  • Simmons AM, Kousik CS, Levi A (2010) Combining reflective mulch and host plant resistance for sweetpotato whitefly (Hemiptera: Aleyrodidae) management in watermelon. Crop Prot 29:898–902

    Article  Google Scholar 

  • South A, Hastings IM (2018) Insecticide resistance evolution with mixtures and sequences: a model-based explanation. Malar J 17:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Sparks TC, Nauen R (2015) IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128

    Article  CAS  PubMed  Google Scholar 

  • Stansly PA, Naranjo SE (2010) Bemisia: bionomics and management of a global pest. Springer, Dordrecht

    Book  Google Scholar 

  • Takahashi H, Mitsui J, Takausa N, Matsud M, Yoneda H, Suszuki J, Ishimitsi K, Kishimoto T (1992) NI-25, a new type of systemic and broad spectrum insecticide. In: Proceedings of 1992 Brighton crop protection conference—pests and diseases, vol 1, pp 88–96

  • Teng X, Wan FH, Chu D (2010) Bemisia tabaci biotype Q dominates other biotypes across China. Fla Entomol 93:363–368

    Article  Google Scholar 

  • Togni PHB, Venzon M, Souza LM, Santos JPCR, Sujii ER (2019) Biodiversity provides whitefly biological control based on farm management. J Pest Sci 92:393–403

    Article  Google Scholar 

  • Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicity: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268

    Article  CAS  PubMed  Google Scholar 

  • Torres-Villa LM, Rodrı́guez-Molina MC, Lacasa-Plasencia A, Bielza-Lino P, Rodrı́guez-del-Rincón A (2002) Pyrethroid resistance of Helicoverpa armigera in Spain: current status and agroecological perspective. Agric Ecosyst Environ 93:55–66

    Article  Google Scholar 

  • Tsagkarakou A, Nikou D, Roditakis E, Sharvit M, Morin S, Vontas J (2009) Molecular diagnostics for detecting pyrethroid and organophosphate resistance mutations in the Q biotype of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Pestic Biochem Physiol 94:49–54

    Article  CAS  Google Scholar 

  • Upadhyay SK, Chandrashekar K, Thakur N, Verma PC, Borgio JF, Singh PK, Tuli R (2011) RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J Biosci 36:153–161

    Article  CAS  PubMed  Google Scholar 

  • Van Der Blom J, Robledo A, Torres S, Sánchez JA, Contreras M (2008) Control biológico de plagas en Almería: revolución verde después de dos décadas. Phytoma España 198:42–47

    Google Scholar 

  • Van Lenteren JC, Drost YC, Van Roermund HJW, Posthuma-Doodeman CJAM (1997) Aphelinid parasitoids as sustainable biological control agents in greenhouses. J Appl Entomol 121:473–485

    Article  Google Scholar 

  • Vandervoet TF, Ellsworth PC, Carrière Y, Naranjo SE (2018) Quantifying conservation biological control for management of Bemisia tabaci (Hemiptera: Aleyrodidae) in cotton. J Econ Entomol 111:1056–1068

    Article  PubMed  Google Scholar 

  • Vassiliou V, Emmanouilidou M, Perrakis A, Morou E, Vontas J, Tsagkarakou A, Roditakis E (2011) Insecticide resistance in Bemisia tabaci from Cyprus. Insect Sci 18:30–39

    Article  CAS  Google Scholar 

  • Vite-Vallejo O, Barajas-Fernández MG, Saavedra-Aguilar M, Cardoso-Taketa A (2018) Insecticidal effects of ethanolic extracts of Chenopodium ambrosioides, Piper nigrum, Thymus vulgaris, and Origanum vulgare against Bemisia tabaci. Southwest Entomol 43:383–393

    Article  Google Scholar 

  • Vyas M, Raza A, Ali MY, Ashraf MA, Mansoor S, Shahid AA, Brown JK (2017) Knock down of whitefly gut gene expression and mortality by orally delivered gut gene-specific dsRNAs. PLoS ONE 12(1):e0168921. https://doi.org/10.1371/journal.pone.0168921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagan TA, Cai W, Hua H (2018) Repellency, toxicity, and anti-oviposition of essential oil of Gardenia jasminoides and its four major chemical components against whiteflies and mites. Sci Rep 8:9375. https://doi.org/10.1038/s41598-018-27366-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yao M, Wu Y (2009) Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci. Pest Manag Sci 65(11):1189–1194

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yan H, Yang Y, Wu Y (2010) Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest Manag Sci 66:1360–1366

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang Y, Yang X, Xie W, Wu Q (2017) Resistance monitoring for eight insecticides on the sweetpotato whitefly (Hemiptera: Aleyrodidae) in China. J Econ Entomol 110:660–666

    Article  PubMed  Google Scholar 

  • Wang R, Wang J, Che W, Luo C (2018) First report of field resistance to cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci MED in China. J Integr Agric 16:60345–60347

    Google Scholar 

  • Watanabe LFM, Bello VH, De Marchi BR et al (2019) Performance and competitive displacement of Bemisia tabaci MEAM1 and MED cryptic species on different host plants. Crop Prot 124:104860

    Article  Google Scholar 

  • Wraight SP, Carruthers RI, Jaronski ST, Bradley O, Garza CJ, Galaini W (2000) Evaluation of entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus for microbial control of the silverleaf whitefly, Bemisia argentifolii. Biol Control 17:203–217

    Article  Google Scholar 

  • Xu J, De Barro PJ, Liu SS (2010) Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bull Entomol Res 100:359–366

    Article  CAS  PubMed  Google Scholar 

  • Yao FL, Zheng Y, Huang XY, Ding XL et al (2017) Dynamics of Bemisia tabaci biotypes and insecticide resistance in Fujian province in China during 2005–2014. Sci Rep 7:40803. https://doi.org/10.1038/srep40803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Wang SL, Zhou JC, Du YZ, Zhang YJ, Wang JJ (2012) Status of insecticide resistance and associated mutations in Q-biotype of whitefly, Bemisia tabaci, from eastern China. Crop Prot 31:67–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rami Horowitz.

Additional information

Communicated by N. Desneux.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horowitz, A.R., Ghanim, M., Roditakis, E. et al. Insecticide resistance and its management in Bemisia tabaci species. J Pest Sci 93, 893–910 (2020). https://doi.org/10.1007/s10340-020-01210-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-020-01210-0

Keywords

Navigation