Skip to main content
Log in

The potential use of thymol and (R)-(+)-pulegone as detoxifying enzyme inhibitors against Spodoptera litura (Lepidoptera: Noctuidae)

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Detoxifying enzyme inhibitors are being used in insecticide formulations to restore insect susceptibility. Essential oils, also known as biopesticides, are volatile plant secondary metabolites. This study aimed to determine the potential of two essential oil constituents (thymol and (R)-(+)-pulegone) to act against the detoxifying enzymes of Spodoptera litura. Thymol and (R)-(+)-pulegone were studied on the third instar larvae of S. litura by topical application under laboratory conditions. Thymol and (R)-(+)-pulegone were found to be highly toxic to S. litura (24 h LC50 values of ~5.61 and 8.35 μg/larva, respectively) and significantly decreased the activity of carboxylesterases and cytochromes P450. Moreover, thymol (1.79 and 3.51 μg/larva) and (R)-(+)-pulegone (2.56 and 5.15 μg/larva) had a significantly higher inhibitory effect on carboxylesterase activity than the commercial inhibitor triphenyl phosphate (16 μg/larva). The results indicated that thymol and (R)-(+)-pulegone have the potential to be used as alternative inhibitors to develop insecticide formulations for controlling the agricultural insect pest S. litura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alagawany, M., Farag, M. R., Abdelnour, S. A., & Elnesr, S. S. (2020). A review on the beneficial effect of thymol on health and production of fish. Reviews in Aquaculture, 13, 632–641.

    Article  Google Scholar 

  • Álvarez-Martínez, F. J., Barrajón-Catalán, E., Herranz-López, M., & Micol, V. (2021). Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine, 90, 153626.

    Article  PubMed  CAS  Google Scholar 

  • Armes, N., Wightman, J., Jadhav, D., & Rao, G. (1997). Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, India. Pesticide Science, 50, 240–248.

    Article  CAS  Google Scholar 

  • Avery, M. L., Decker, D. G., Humphrey, J. S., & Laukert, C. C. (1996). Mint plant derivatives as blackbird feeding deterrents. Crop Protection, 15, 461–464.

    Article  Google Scholar 

  • Bernard, C. B., & Philogène, B. J. R. (1993). Insecticide synergists: Role, importance, and perspectives. Journal of Toxicology and Environmental Health, 38(2), 199–223.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chang, L. L., & Hodgson, E. (1975). Biochemistry of detoxification in insects: microsomal mixed-function oxidase activity in the housefly, Musca domestica. Insect Biochemistry, 5, 93–103.

    Article  CAS  Google Scholar 

  • Chatuphonprasert, W., & Jarukamjorn, K. (2021). Effect of styrene oxide and diethyl maleate on expression of cytochrome P450 family 1 and glutathione store in mouse liver. Tropical Journal of Pharmaceutical Research, 20, 231–237.

    Article  CAS  Google Scholar 

  • Denholm, I., & Rowland, M. W. (1992). Tactics for managing pesticide resistance in arthropods: Theory and practice. Annual Review of Entomology, 37, 91–112.

    Article  CAS  PubMed  Google Scholar 

  • Everson, J. L., Sun, M. R., Fink, D. M., Heyne, G. W., Melberg, C. G., Nelson, K. F., Doroodchi, P., Colopy, L. J., Ulschmid, C. M., Martin, A. A., McLaughlin, M. T., & Lipinski, R. J. (2019). Developmental toxicity assessment of piperonyl butoxide exposure targeting sonic hedgehog signaling and forebrain and face morphogenesis in the mouse: An in vitro and in vivo study. Environmental Health Perspectives, 127, 107006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feyereisen, R. (2015). Insect P450 inhibitors and insecticides: Challenges and opportunities. Pest Management Science, 71, 793–800.

    Article  CAS  PubMed  Google Scholar 

  • Fujioka, K., & Casida, J. E. (2007). Glutathione S-transferase conjugation of organophosphorus pesticides yields S-phospho-, S-aryl-, and S-alkylglutathione derivatives. Chemical Research in Toxicology, 20, 1211–1217.

    Article  PubMed  CAS  Google Scholar 

  • Gaire, S., Zheng, W., Scharf, M. E., & Gondhalekar, A. D. (2021). Plant essential oil constituents enhance deltamethrin toxicity in a resistant population of bed bugs (Cimex lectularius L.) by inhibiting cytochrome P450 enzymes. Pesticide Biochemistry and Physiology, 175, 104829.

    Article  CAS  PubMed  Google Scholar 

  • Gunning, R. V., Devonshire, A. L., & Moores, G. D. (1995). Metabolism of esfenvalerate by pyrethroid-susceptible and resistant Australian Helicoverpa armigera (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology, 51, 205–213.

    Article  CAS  Google Scholar 

  • Hilliou, F., Chertemps, T., Maïbèche, M., & Le Goff, G. (2021). Resistance in the genus Spodoptera: Key insect detoxification genes. Insects, 12, 544.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong, X., Chen, R., Hou, R., Yuan, L., & Zha, J. (2018). Triphenyl phosphate (TPHP)-induced neurotoxicity in adult male Chinese rare minnows (Gobiocypris rarus). Environmental Science & Technology, 52, 11895–11903.

    CAS  Google Scholar 

  • Huang, S., & Han, Z. (2007). Mechanisms for multiple resistances in field populations of common cutworm, Spodoptera litura (Fabricius) in China. Pesticide Biochemistry and Physiology, 87, 14–22.

    Article  CAS  Google Scholar 

  • Huang, Q., Wang, X., Yao, X., Gong, C., & Shen, L. (2019). Effects of bistrifluron resistance on the biological traits of Spodoptera litura (Fab.) (Noctuidae: Lepidoptera). Ecotoxicology, 28, 323–332.

    Article  CAS  PubMed  Google Scholar 

  • Hummelbrunner, L. A., & Isman, M. B. (2001). Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). Journal of Agricultural and Food Chemistry, 49, 715–720.

    Article  CAS  PubMed  Google Scholar 

  • Isman, M. B. (2000). Plant essential oils for pest and disease management. Crop Protection, 19, 603–608.

    Article  CAS  Google Scholar 

  • Isman, M. B. (2020). Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochemistry Reviews, 19, 235–241.

    Article  CAS  Google Scholar 

  • Junhirun, P., Pluempanupat, W., Yooboon, T., Ruttanaphan, T., Koul, O., & Bullangpoti, V. (2018). The study of isolated alkane compounds and crude extracts from Sphagneticola trilobata (Asterales: Asteraceae) as a candidate botanical insecticide for lepidopteran larvae. Journal of Economic Entomology, 111, 2699–2705.

    CAS  PubMed  Google Scholar 

  • Kaur, V., Kaur, R., & Bhardwaj, U. (2021). A review on dill essential oil and its chief compounds as natural biocide. Flavour and Fragrance Journal, 36, 412–431.

    Article  CAS  Google Scholar 

  • Koul, O., Singh, R., Kaur, B., & Kanda, D. (2013). Comparative study on the behavioral response and acute toxicity of some essential oil compounds and their binary mixtures to larvae of Helicoverpa armigera, Spodoptera litura and Chilo partellus. Industrial Crops and Products, 49, 428–436.

    Article  CAS  Google Scholar 

  • Marsin, A. M., Muhamad, I. I., Anis, S. N. S., Lazim, N. A. M., Ching, L. W., & Dolhaji, N. H. (2020). Essential oils as insect repellent agents in food packaging: A review. European Food Research and Technology, 246, 1519–1532.

    Article  CAS  Google Scholar 

  • Narayanan, M., Ranganathan, M., Subramanian, S. M., Kumarasamy, S., & Kandasamy, S. (2020). Toxicity of cypermethrin and enzyme inhibitor synergists in red hairy caterpillar Amsacta albistriga (Lepidoptera: Arctiidae). The Journal of Basic and Applied Zoology, 81, 45.

    Article  Google Scholar 

  • Nobsathian, S., Ruttanaphan, T., & Bullangpoti, V. (2019). Insecticidal effects of triterpene glycosides extracted from Holothuria atra (Echinodermata: Holothuroidea) against Spodoptera litura (Lepidoptera: Noctuidae). Journal of Economic Entomology, 112, 1683–1687.

    Article  CAS  PubMed  Google Scholar 

  • Norris, E. J., Johnson, J. B., Gross, A. D., Bartholomay, L. C., & Coats, J. R. (2018). Plant essential oils enhance diverse pyrethroids against multiple strains of mosquitoes and inhibit detoxification enzyme processes. Insects, 9, 132.

    Article  PubMed Central  Google Scholar 

  • O'Neal, S. T., Johnson, E. J., Rault, L. C., & Anderson, T. D. (2019). Vapor delivery of plant essential oils alters pyrethroid efficacy and detoxification enzyme activity in mosquitoes. Pesticide Biochemistry and Physiology, 157, 88–98.

    Article  CAS  PubMed  Google Scholar 

  • Plapp Jr., F. W., Bigley, W. S., Chapmen, G. A., & Eddy, G. W. (1963). Synergism of malathion against resistant house flies and mosquitoes. Journal of Economic Entomology, 56, 643–649.

    Article  CAS  Google Scholar 

  • Rehan, A., & Freed, S. (2014). Selection, mechanism, cross resistance and stability of spinosad resistance in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Crop Protection, 56, 10–15.

    Article  CAS  Google Scholar 

  • Ruttanaphan, T., Pluempanupat, W., & Bullangpoti, V. (2018). Cypermethrin resistance in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) from three locations in Thailand and detoxification enzyme activities. Agriculture and Natural Resources, 52, 484–488.

    Article  Google Scholar 

  • Ruttanaphan, T., Pluempanupat, W., Aungsirisawat, C., Boonyarit, P., Goff, G. L., & Bullangpoti, V. (2019). Effect of plant essential oils and their major constituents on cypermethrin tolerance associated detoxification enzyme activities in Spodoptera litura (Lepidoptera: Noctuidae). Journal of Economic Entomology, 112, 2167–2176.

    Article  PubMed  CAS  Google Scholar 

  • Salehi, B., Mishra, A. P., Shukla, I., Sharifi-Rad, M., Contreras, M. D. M., Segura-Carretero, A., & Sharifi-Rad, J. (2018). Thymol, thyme, and other plant sources: Health and potential uses. Phytotherapy Research, 32, 1688–1706.

    Article  PubMed  Google Scholar 

  • Sanchez-Arroyo, H., Koehler, P. G., & Valles, S. M. (2001). Effects of the synergists piperonyl butoxide and S,S,S-tributyl phosphorotrithioate on propoxur pharmacokinetics in Blattella germanica (Blattodea: Blattellidae). Journal of Economic Entomology, 94, 1209–1216.

    Article  CAS  PubMed  Google Scholar 

  • Shen, J., Li, Z., Li, D., Wang, R., Zhang, S., You, H., & Li, J. (2020). Biochemical mechanisms, cross-resistance and stability of resistance to metaflumizone in Plutella xylostella. Insects, 11, 311.

    Article  PubMed Central  Google Scholar 

  • Shi, L., Shi, Y., Liu, M. F., Zhang, Y., & Liao, X. L. (2021). Transcription factor CncC potentially regulates the expression of multiple detoxification genes that mediate indoxacarb resistance in Spodoptera litura. Insect Science, 28, 1426–1438.

    Article  CAS  PubMed  Google Scholar 

  • Snoeck, S., Greenhalgh, R., Tirry, L., Clark, R. M., Van Leeuwen, T., & Dermauw, W. (2017). The effect of insecticide synergist treatment on genome-wide gene expression in a polyphagous pest. Scientific Reports, 7, 13440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sönmez, A., Bilen, S., Albayrak, M., Yilmaz, S., Biswas, G., Hisar, O., & Yanik, P. D. T. (2015). Effects of dietary supplementation of herbal oils containing 1,8-cineole, carvacrol or pulegone on growth performance, survival, fatty acid composition, and liver and kidney histology of rainbow trout (Oncorhynchus mykiss) fingerlings. Turkish Journal of Fisheries and Aquatic Sciences, 15, 813–819.

    Article  Google Scholar 

  • Sun, Y.-P., & Johnson, E. R. (1972). Quasi-synergism and penetration of insecticides. Journal of Economic Entomology, 65, 349–353.

    Article  CAS  PubMed  Google Scholar 

  • Tak, J.-H., & Isman, M. B. (2017a). Enhanced cuticular penetration as the mechanism of synergy for the major constituents of thyme essential oil in the cabbage looper, Trichoplusia ni. Industrial Crops and Products, 101, 29–35.

    Article  CAS  Google Scholar 

  • Tak, J.-H., & Isman, M. B. (2017b). Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni. Scientific Reports, 7, 42432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tangtrakulwanich, K., & Reddy, G. V. P. (2014). Development of insect resistance to plant biopesticides: An overview. In D. Singh (Eds.), Advances in Plant Biopesticides (pp. 47–62). Springer. https://doi.org/10.1007/978-81-322-2006-0_4

  • Tavares, L., Santos, L., & Zapata Noreña, C. P. (2021). Bioactive compounds of garlic: A comprehensive review of encapsulation technologies, characterization of the encapsulated garlic compounds and their industrial applicability. Trends in Food Science & Technology, 114, 232–244.

    Article  CAS  Google Scholar 

  • Tharamak, S., Yooboon, T., Pengsook, A., Ratwatthananon, A., Kumrungsee, N., Bullangpoti, V., & Pluempanupat, W. (2020). Synthesis of thymyl esters and their insecticidal activity against Spodoptera litura (Lepidoptera: Noctuidae). Pest Management Science, 76, 928–935.

    Article  CAS  PubMed  Google Scholar 

  • Wani, A. R., Yadav, K., Khursheed, A., & Rather, M. A. (2021). An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microbial Pathogenesis, 152, 104620.

    Article  CAS  PubMed  Google Scholar 

  • Xia, X., Lan, B., Tao, X., Lin, J., & You, M. (2020). Characterization of Spodoptera litura gut bacteria and their role in feeding and growth of the host. Frontiers in Microbiology, 11, 1492.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Walailak University (Grant No. WU64231). The authors would like to thank the Department of Zoology, Faculty of Science, Kasetsart University for facilitating experiment equipment and also thanks to ISB fund from Faculty of Science, Kasetsart University.

Author information

Authors and Affiliations

Authors

Contributions

T.R. and V.B. designed the experiments, conducted the experiments, analyzed the data, and wrote the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Vasakorn Bullangpoti.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruttanaphan, T., Bullangpoti, V. The potential use of thymol and (R)-(+)-pulegone as detoxifying enzyme inhibitors against Spodoptera litura (Lepidoptera: Noctuidae). Phytoparasitica 50, 913–920 (2022). https://doi.org/10.1007/s12600-022-00989-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-022-00989-1

Keywords

Navigation