Skip to main content

Advertisement

Log in

Morpho-anatomical characterization of interspecific derivatives of Gossypium hirsutum L. × G. armourianum Kearney cross for whitefly tolerance

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The wide spread cultivation of transgenic Bt-cotton in India has altered the pest profile from bollworms to sap-sucking insect-pests especially whitefly [Bemisia tabaci (Gennadius)]. A whitefly epidemic in 2015 destroyed cotton crop on nearly 1.5 million hectares in North Indian cotton growing states. Management of whitefly is not easy due to its wider host adaptability, potential for insecticide resistance development and rapid evolution. Host plant resistance is the most viable approach for combating whitefly menace. A wild cotton species Gossypium armourianum Kearney Accession PAU 1 tolerant to various biotic stresses was used for the introgression of whitefly tolerance in Upland cotton (Gossypium hirsutum L.). Various morpho-anatomical characteristics (viz. stomatal frequency, gossypol glands, trichome density, leaf thickness) were studied from leaf discs in experimental material (i.e. parents G. armourianum Acc. PAU 1, G. hirsutum cv. F 1861 and LH 1556, F1, BC1F1, BC2F1 derivatives). The BC2F1 individuals differed significantly in stomatal frequency, trichome density, number of gossypol glands and lamina thickness; and hence their response to whitefly tolerance. However, with age progression, a significant decline in stomatal frequency, gossypol glands and trichome density were observed in mature leaves. Correlation studies revealed a positive association of whitefly incidence with trichome density (r = 0.319*) and stomatal frequency (r = 0.372*) in young leaves. A positive correlation of stomatal frequency with gossypol gland (ry = 0.251* and rm = 0.296*) and trichome density (ry = 0.360* and rm = 0.305*) was observed in both young and mature leaves. G. armourianum possessed 4–5 -folds higher tannin contents than G. hirsutum parents before infestation. Surprisingly in G. armourianum, increase in tannin levels were observed much earlier (after 24 h of infestation) as compared to G. hirsutum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdurakhmonov, I. Y. (2013). Role of genomic studies in boosting yield. Proceedings of International Cotton Advisory Committee Board (ICAC), Cartagena, pp 7–22.

  • Alon, M., Elbaz, M., Ben-Zvi, M. M., Feldmesser, E., & Vainstein, A. (2012). Insights into the transcriptomics of polyphagy: Bemisia tabaci adaptability to phenyl propanoids involves coordinated expression of defense and metabolic genes. Insect Biochemistry & Molecular Biology, 42, 251–263.

    CAS  Google Scholar 

  • Ashfaq, M., Ane, M. N., Zia, K., Nasreen, A., & Hassan, M. (2010). The correlation of abiotic factors and physico-morphic characteristics of (Bacillus thuringiensis) Bt transgenic cotton with whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) and jassid, Amrasca devastans (Homoptera: Jassidae) populations. African Journal of Agricultural Research, 5(22), 3102–3107.

    Google Scholar 

  • Bleeker, P. M., Diergaarde, P. J., Ament, K., Guerra, J., Weidner, M., Schutz, S., de Both, M. T., Haring, M. A., & Schuurink, R. C. (2009). The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiology, 151, 925–935.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Briddon, R. W., & Markham, P. G. (2000). Cotton leaf curl virus disease. Virus Research, 71, 151–159.

    CAS  PubMed  Google Scholar 

  • Butler, G. D. J. R., Wilson, F. D., & Fishler, G. (1991). Cotton leaf trichomes and populations of Empoasca lybica and Bemisia tabaci. Crop Protection, 10, 461–464.

    Google Scholar 

  • Cabanillas, H. E., De Leon, J. H., Humber, R. A., Murray, K. D., & Jones, W. A. (2013). Isaria poprawskii sp nov (Hypocreales: Cordycipitaceae), a new entomopathogenic fungus from Texas affecting sweet potato whitefly. Mycoscience, 54, 158–169.

    Google Scholar 

  • Cavanagh, A., Hazzard, R., Adler, L. S., & Boucher, J. (2009). Using trap crops for control of Acalymma vittatum (Coleoptera: Chrysomelidae) reduces insecticide use in butternut squash. Journal of Economic Entomology, 102, 1101–1107.

    CAS  PubMed  Google Scholar 

  • Chavan, S. J., Bhosle, B. B., & Bhute, N. K. (2010). Estimation of losses due to major insect pests in desi cotton in Maharashtra. Journal of Cotton Research and Development, 24, 95–96.

    Google Scholar 

  • Chen, Z. H., Chen, G., Dai, F., Wang, Y., Hills, A., & Ruan, Y. L. (2017). Molecular evolution of grass stomata. Trends in Plant Science, 22, 124–139.

    CAS  PubMed  Google Scholar 

  • De-Boer, H. J., Price, C. A., Wagner-Cremer, F., Dekker, S. C., Franks, P. J., & Veneklaas, E. J. (2016). Optimal allocation of leaf epidermal area for gas exchange. New Phytologist, 210, 1219–1228.

    Google Scholar 

  • Dittberner, H., Korte, A., Mettler-Altmann, T., Weber, A. P. M., Monroe, G., & de Meaux, J. (2018). Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana. Molecular Ecology. https://doi.org/10.1111/mec.14838

    Article  PubMed  PubMed Central  Google Scholar 

  • Doheny-Adams, T., Hunt, L., Franks, P. J., Beerling, D. J., & Gray, J. E. (2012). Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions of the Royal Society London Series B Biological Science, 367, 547–555.

    CAS  Google Scholar 

  • Drake, J. W., & Holland, J. J. (1999). Mutation rates among RNA viruses. Proceedings of the National Academy of Sciences USA, 96, 13910–13913.

    CAS  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Roberts, P. A., & Smith, F. (1956). Calorimetric methods for the determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    CAS  Google Scholar 

  • Fanourakis, D., Giday, H., Milla, R., Pieruschka, R., Kjaer, K. H., & Bolger, M. (2015). Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides. Annals of Botany, 115, 555–565.

    CAS  PubMed  Google Scholar 

  • Farooq, J., Farooq, A., Riaz, M., Shahid, M. R., Saeed, F., Hussain, M. I. T., Batool, A., & Mahmood, A. (2014). Cotton leaf curl virus disease a principle cause of decline in cotton productivity in Pakistan (a mini review). Canadian Journal of Plant Protection, 2, 9–16.

    Google Scholar 

  • Franks, P. J., & Beerling, D. J. (2009). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences USA, 106, 10343–10347.

    CAS  Google Scholar 

  • García-Andrés, S., Monci, F., Navas-Castillo, J., & Moriones, E. (2006). Begomo virus genetic diversity in the native plant reservoir Solanum nigrum: Evidence for the presence of a new virus species of recombinant nature. Virology, 350, 433–442.

    PubMed  Google Scholar 

  • Goławska, S., & Łukasik, I. (2009). Acceptance of low-saponin lines of alfalfa with varied phenolic concentrations by pea aphid (Homoptera: Aphididae). Biologia, 64, 377–382.

    Google Scholar 

  • Grover, G., Kaur, B., Pathak, D., & Kumar, V. (2016). Genetic variation for leaf trichome density and its association with sucking insect-pests incidence in Asiatic cotton. Indian Journal of Genetics, 76, 365–368.

    Google Scholar 

  • Guo, H., Sun, Y., Peng, X., Wang, Q., Harris, M., & Ge, F. (2016). Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress. Journal of Experimental Botany, 67(3), 681–693.

    CAS  PubMed  Google Scholar 

  • Hagg, J. F., Zagrobelny, M., & Bak, S. (2013). Plant defence against insect herbivores. International Journal of Molecular Science, 14(5), 10242–10297.

    Google Scholar 

  • Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from the leaf tissue without maceration. Canadian Journal of Botany, 57, 1332–1334.

    CAS  Google Scholar 

  • Houndete, T. A., Ketoh, G. K., Hema, O. S. A., Brevault, T., Glitho, I. A., & Martin, T. (2010). Insecticide resistance in field populations of Bemisia tabaci (Hemiptera: Aleyrodidae) in West Africa. Pest Management Science, 66, 1181–1185.

    CAS  PubMed  Google Scholar 

  • India Stat. com. (2018). India Stat: Socio-economic statistical information about India. https://www.indiastat.com/

  • Kanher, F. M., Syed, T. S., Abro, G. H., Jahangir, T. M., & Tunio, S. A. (2016). Some physio-morphological leaf characters of gamma irradiated cotton lines to resistance against Jassid (Amrasca devastans Dist.). Journal of Entomology and Zoology Studies, 4, 80–85.

    Google Scholar 

  • Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., John Vontas, J., Gorman, K., & Denholm, I. (2008). Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry & Molecular Biology, 38, 634–644.

    CAS  Google Scholar 

  • Kaur, H., Pathak, D., & Rathore, P. (2016). Development and characterization of an interspecific Gossypium hirsutum x Gossypium armourianum hybrid. Applied Biological Research, 18, 146–154.

    Google Scholar 

  • Keshav, A., Shera, P. S., & Singh, J. (2013). Morphological basis of resistance to spotted bollworm, Earias vittella (Fabricius) in Asiatic cotton. Phytoparasitica, 41, 235–240.

    Google Scholar 

  • Khalil, H., Raza, A. B. M., Afzal, M., Aqueel, M. A., Khalil, M. A., & Mansoor, M. M. (2017). Effects of plant morphology on the incidence of sucking insect pests complex in few genotypes of cotton. Journal of the Saudi Society of Agricultural Sciences, 16, 344–349.

    Google Scholar 

  • Kumar, V., Kular, J. S., Kumar, R., Sidhu, S. S., & Chhuneja, P. K. (2020). Integrated whitefly [Bemisia tabaci (Gennadius)] management in Bt-cotton in North India: An agroecosystem-wide community-based approach. Current Science, 119, 618–624.

    CAS  Google Scholar 

  • Li, S. J., Xue, X., Ahmed, M. Z., Ren, S. X., & Du, Y. Z. (2011). Host plants and natural enemies of Bemisia tabaci (Hemiptera: Aleyrodidae) in China. Journal of Insect Science, 18, 101–120.

    CAS  Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  • Lu, Y. H., Wu, K. M., Wyckhuys, K. A. G., & Guo, Y. Y. (2009). Potential of mungbean, Vigna radiatus as a trap crop for managing Apolygus lucorum (Hemiptera: Miridae) on Bt cotton. Crop Protection, 28, 77–81.

    Google Scholar 

  • Luo, C., Jones, C. M., Devine, G., Zhang, F., Denholm, I., & Gorman, K. (2010). Insecticides resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Protection, 29, 429–434.

    CAS  Google Scholar 

  • Mansour, M. H., Zohdy, N. M., El-Gengaihi, S. E., & Amr, A. E. (1997). The relationship between tannins concentration in some cotton varieties and susceptibility to piercing sucking insects. Journal of Applied Entomology, 121, 321–325.

    CAS  Google Scholar 

  • Miyazaki, J., Stiller, W. N., & Wilson, L. J. (2013). Identification of host plant resistance to silver leaf whitefly in cotton: Implications for breeding. Field Crops Research, 154, 145–152.

    Google Scholar 

  • Monga, D., Narula, A. M., & Raj, S. (2001). Management of cotton leaf curl virus- A dreaded disease in North India. Proceedings of National seminar on sustainable cotton production to meet the future requirement of industry, Directorate of Cotton Development, Government of India, pp 112–15.

  • Muller, H. M., Schafer, N., Bauer, H., Geiger, D., Lautner, S., Fromm, J., et al. (2017). The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel. New Phytologist, 216, 150–162.

    Google Scholar 

  • Murugesan, N., & Kavitha, A. (2010). Host plant resistance in cotton accessions to the leafhopper Amrasca devastans (Distant). Journal of Biopesticides, 3, 526–533.

    Google Scholar 

  • Mwila, N., Rubaihayo, P. R., Kyamanywa, S., Odong, T. L., Nuwamanya, E., Mwala, M., Agbahoungba, S., & Badji, A. (2017). Biochemical factors associated with cassava resistance to whitefly infestation. African Crop Science Journal, 25(3), 365–385.

    Google Scholar 

  • Naranjo, S. E., & Ellsworth, P. C. (2017). Whitefly IPM in cotton: Ecological, biological and socio-economic components contributing to success. Indo-US symposium on curbing whitefly-plant virus pandemics- The departure from pesticides to genomics solutions, Punjab Agricultural University, Ludhiana, India, pp 23–24.

  • Naveen, N. C., Chaubey, R., Kumar, D., Rebijith, K. B., Rajagopal, R., Subrahmanyam, B., & Subramanian, S. (2017). Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Scientific Reports, 7, 40634.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nawab, N. N., Khan, I. A., Khan, A. A., & Amjad, M. (2011). Characterization and inheritance of cotton leaf pubescence. Pakistan Journal of Botany, 43, 649–658.

    Google Scholar 

  • Pathak, D., Bala, S., Rathore, P., Sekhon, P. S., & Singh, K. (2016a) Identification of new sources of resistance to cotton leaf curl disease and its introgression in American cotton. Proceedings of the 6th World Cotton Research Conference, Goiania, Brazil, pp 50–51.

  • Pathak, D., Kaur, H., Rathore, P., Singh, B., Bala, S., Sekhon, P. S. & Singh, K. (2016b). Introgression of cotton leaf curl disease resistance from Gossypium armourianum into G. hirsutum. Proceedings of 1st International Agrobiodiversity Congress, New Delhi, pp 198.

  • Phulse, V. B., & Udikeri, S. S. (2018). Tracking in season dynamics of insecticide resistance in aphids Aphis gossypii (Glover) in different cotton growing ecosystems. Journal of Cotton Research & Development, 32, 276–283.

    Google Scholar 

  • Pushpam, R., & Raveendran, T. S. (2006). Production of interspecific hybrids between Gossypium hirsutum and jassid resistant wild species G. raimondii and G. armourianum. Cytologia, 71, 407–418.

    Google Scholar 

  • Qi, X., & Torii, K. U. (2018). Hormonal and environmental signals guiding stomatal development. BMC Biology, 16, 21.

    PubMed  PubMed Central  Google Scholar 

  • Rathore, K. S. (2017). Transgenic cotton for trait improvement and applications to plant virus and whitefly resistance. Indo-US symposium on curbing whitefly-plant virus pandemics-The departure from pesticides to genomics solutions, Punjab Agricultural University, Ludhiana, India, pp 38–40.

  • Razaq, M., Suhail, A., Aslam, M., Arif, M. J., Saleem, M. A., & Khan, H. A. (2013). Patterns of insecticides used on cotton before introduction of genetically modified cotton in Southern Punjab, Pakistan. Pakistan Journal of Zoology, 45, 574–577.

    CAS  Google Scholar 

  • Schuster, D. J., Mann, R. S., Toapanta, M., Cordero, R., Thompson, S., & Cyman, S. (2010). Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. Pest Management Science, 66, 186–195.

    CAS  PubMed  Google Scholar 

  • Shakeel, A., Farooq, J., Ali, M. A., Riaz, M., Farooq, A., Saeed, A., & Saleem, M. F. (2011). Inheritance pattern of earliness in cotton (Gossypium hirsutum L.). Australian Journal of Crop Science, 5, 1224–1231.

    Google Scholar 

  • Singh, B. (2018). Introgression of cotton leaf curl disease resistance from Gossypium armourianum to G. hirsutum. M.Sc. Thesis, Punjab Agricultural University, Ludhiana.

  • Singh, B., Pathak, D., & RathorePooja, P. (2019). Segregation distortion in cotton. Agricultural Research Journal, 56(1), 13–16.

    Google Scholar 

  • Sulistyo, A., & Inayati, A. (2016). Mechanisms of antixenosis, antibiosis, and tolerance of fourteen soybean genotypes in response to whiteflies (Bemisia tabaci). Biodiversitas, 17(2), 447–453.

    Google Scholar 

  • Sun, Y., Yan, F., Cui, X., & Liu, F. (2014). Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes. Journal of Plant Physiology, 171, 1248–1255.

    CAS  PubMed  Google Scholar 

  • Sun, Y., Guo, H., Yuan, L., Wei, J., Zhang, W., & Ge, F. (2015). Plant stomatal closure improves aphid feeding under elevated CO2. Global Change Biology, 21, 2739–2748.

    PubMed  Google Scholar 

  • Swain, T., & Hills, W. E. (1959). The phenolic constituents of Prunus domestica. I- The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10, 63–68.

    CAS  Google Scholar 

  • Taggar, G. K., & Gill, R. S. (2012). Preference of whitefly, Bemisia tabaci, towards black gram genotypes: Role of morphological leaf characteristics. Phytoparasitica, 40, 461–474.

    Google Scholar 

  • Taggar, G. K., Gill, R. S., Gupta, A. K., & Singh, S. (2014). Induced changes in the antioxidative compounds of Vigna mungo genotypes due to infestation by Bemisia tabaci (Gennadius). Journal of Environmental Biology, 35(6), 1037–1045.

    PubMed  Google Scholar 

  • Tezcan, F., Goven, M. A., Demir, G., & Topuz, M. (2000). Pamukta Entegre Mücadele Uretici Broşsuru. Bornova Zirai Mucadele Araştırma Enstitusu, yayın no: 2002/5, 32 s, Gzmir.

  • Trapero, C., Wilson, I. W., Stiller, W. N., & Wilson, L. J. (2016). Enhancing integrated pest management in GM cotton systems using host plant resistance. Frontiers in Plant Science, 7, 500.

    PubMed  PubMed Central  Google Scholar 

  • Vyskocilova, S., Tay, W. T., Brunschot, S. V., Susan, S., & Colvin, J. (2018). An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Scientific Reports, 8, 10886.

    PubMed  PubMed Central  Google Scholar 

  • Wagner, G., Wang, E., & Shepherd, R. (2004). New approaches for studying and exploiting an old protuberance, the plant trichome. Annals of Botany, 93, 3–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z. Y., Yao, M. D., & Wu, Y. D. (2009). Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci. Pest Management Science, 65, 1189–1194.

    CAS  PubMed  Google Scholar 

  • War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., & Sharma, H. C. (2012). Mechanisms of plant defence against insect herbivores. Plant Signalling & Behaviour, 7(10), 1306–1320.

    Google Scholar 

  • Wendel, J. F., Flagel, L., & Adams, K. L. (2012). Jeans, genes, and genomes: Cotton as a model for studying polyploidy. In P. S. Soltis & D. E. Soltis (Eds.), Polyploidy and genome evolution (pp. 181–208). Springer.

    Google Scholar 

  • Werker, E. (2000). Trichome diversity and development. In D. L. Hallahan & J. C. Gray (Eds.), Advances in botanical research (pp. 1–35). Elsevier Science.

    Google Scholar 

  • Wright, R. J., Thaxton, P. M., El-Zik, K. M., & Paterson, A. H. (1999). Molecular mapping of genes affecting pubescence of cotton. Journal of Heredity, 90(1), 215–219.

    CAS  Google Scholar 

  • Zia, K., Ashfaq, M., Arif, M. J., & Sahi, S. T. (2011). Effect of physico-morphic characters on population of whitefly Bemisia tabaci in transgenic cotton. Pakistan Journal of Agricultural Sciences, 48(1), 63–69.

    Google Scholar 

  • Zaidi, S. S. E. A., Naqvi, R. Z., Asif, M., Strickler, S., Shakir, S., Shafiq, M., Khan, A. M., Amin, I., Mishra, B., Mukhtar, M. S., & Scheffler, B. E. (2020). Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated cotton (Gossypium hirsutum). Plant Biotechnology Journal, 18(3), 691–706.

    CAS  PubMed  Google Scholar 

Download references

Funding

The plant material was developed under the Programme Support on “Enhancing Durability of Resistance to Biotic Stresses in Selected Cereal and Fiber Crops through Biotechnological Approaches (BT/01/CE1B/121/01)” funded by the Department of Biotechnology, Government of India. Ministry of Science and Technology (grant no. 102/IFD/SAN/1307/2014-15).

Author information

Authors and Affiliations

Authors

Contributions

N. Gupta and D. Pathak designed research. D. Pathak and P. Rathore developed and maintained the germplasm. T. Suthar and N. Gupta recorded the morphoanatomical observations and performed the statistical analysis. T. Suthar and S. Sharma conducted biochemical profiling. N. Gupta and D. Pathak interpreted the data and wrote the paper.

Corresponding author

Correspondence to Neha Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suthar, T., Gupta, N., Pathak, D. et al. Morpho-anatomical characterization of interspecific derivatives of Gossypium hirsutum L. × G. armourianum Kearney cross for whitefly tolerance. Phytoparasitica 50, 423–441 (2022). https://doi.org/10.1007/s12600-021-00963-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-021-00963-3

Keywords

Navigation