Skip to main content
Log in

Defense responses of Capsicum spp. genotypes to post-harvest Colletotrichum sp. inoculation

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Pepper (Capsicum spp.) cultivars resistant to anthracnose are not commercially available and depending on conducive environmental conditions the crop faces significant yield losses. Pepper genotypes from a germplasm collection were screened for resistance to anthracnose. Unripe and ripe mature fruit of selected genotypes were inoculated post-harvest with Colletotrichum sp. Plant disease resistance-associated parameters were evaluated, and complete resistance was not observed in any genotype. Genotype P27 (Capsicum baccatum) showed the most disease resistance, while P175 (Capsicum chinense) showed the greatest disease susceptibility. These contrasting individuals for disease response were further investigated in an attempt to better understand pepper defense mechanisms. A response to disease common to both resistant and susceptible genotypes involved changes in threitol, carotenoids, and soluble solids contents, and ascorbate peroxidase enzyme activity. Disease incidence and severity was dependent on ripening stage and involved the accumulation of polar compounds butane-2,3-diol, fructose, and phenolics, and superoxide dismutase and peroxidase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abhayashree, M. S., Murali, M., & Amruthesh, K. N. (2016). Abiotic elicitors mediated resistance and enhanced defense related enzymes in Capsicum annuum L. against anthracnose disease. Sci. Hort., 204, 172–178.

    Article  CAS  Google Scholar 

  • Acunha, T. S., Crizel, R. L., Tavares, I. B., Barbieri, R. L., Pereira, C. M. P., Rombaldi, C. V., & Chaves, F. C. (2017). Bioactive compound variability in a Brazilian Capsicum pepper collection. Crop Science, 65, 523–532.

    Google Scholar 

  • Ali, A., Bordoh, P. A., Singh, A., Siddiqui, Y., & Droby, S. (2016). Post-harvest development of anthracnose in pepper (Capsicum spp.): Etiology and management strategies. Crop Prot, 90, 132–141.

    Article  CAS  Google Scholar 

  • AOAC. (2005). Official methods of analysis of the Association of Official Analytical Chemists International (16th edition). AOAC International: Arlington, Texas.

    Google Scholar 

  • Baba, V. Y., Constantino, L. V., Ivamoto, S. T., Moreira, A. F. P., Madeira, T. B., Nixdorf, S. L., Rodrigues, R., & Gonçalves, L. S. A. (2019). Capsicum-Colletotrichum interaction: Identification of resistance sources and quantification of secondary metabolites in unripe and ripe fruits in response to anthracnose infection. Sci. Hort., 246, 469–477.

    Article  CAS  Google Scholar 

  • Bosland, P. W., & Votava, E. J. (2012). Peppers: Vegetable and spice Capsicum (2nd edition). Cambridge: CABI.

    Book  Google Scholar 

  • ChunYing, S., Li, M. S., Hai, Z. Z., Alain, P., Hao, W. L., & Xi, B. Z. (2015). Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5. Scientia Horticulturae, 181, 81–88.

    Article  Google Scholar 

  • Edirisinghe, M., Ali, A., Maqbool, M., & Alderson, P. G. (2014). Chitosan controls postharvest anthracnose in bell pepper by activating defense-related enzymes. Journal of Food Science and Technology, 51, 4078–4083.

    Article  CAS  Google Scholar 

  • Effantin, G., Rivasseau, C., Gromova, M., Bligny, R., & Hugouvieux-Cotte-Pattat, N. (2011). Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium. Molecular Microbiology, 82, 988–997.

    Article  CAS  Google Scholar 

  • Fortunato, A. A., Debona, D., Bernardeli, A. M. A., & Rodrigues, F. A. (2015). Defence-related enzymes in soybean resistance to target spot. Journal of Phytopathology, 163, 731–742.

    Article  CAS  Google Scholar 

  • García-Pérez, M., Egea, C., & Candela, M. (1998). Defence response of pepper (Capsicum annuum) suspension cells to Phytophthora capsici. Physiologia Plantarum, 103, 527–533.

    Article  Google Scholar 

  • Guetsky, R., Kobiler, I., Wang, X., Perlman, N., Gollop, N., Avila-Quezada, G., Hadar, I., & Prusky, D. (2005). Metabolism of the flavonoid epicatechin by laccase of Colletotrichum gloeosporioides and its effect on pathogenicity on avocado fruit. Biochemistry and Cell Biology, 95, 1341–1348.

    CAS  Google Scholar 

  • Ho, W. C., & Ko, W. H. (1997). A simple method for obtaining single-spore isolates of fungi. Botanical Bulletin of the Academia Sinica, 38, 41–44.

    Google Scholar 

  • Jesus, J. L., Tomé, L. I. N., Eusébio, M. E. S., & Redinha, J. S. (2006). Determination of the enthalpy of solute-solvent interaction from the enthalpy of solution: Aqueous solutions of erythritol and L-threitol. The Journal of Physical Chemistry. B, 110, 9280–9285.

    Article  CAS  Google Scholar 

  • Kim, K. D., Oh, B. J., & Yang, J. (1999). Differential interactions of a Colletotrichum gloeosporioides isolates with green and red pepper fruits. Phytoparasitica, 27, 97–106.

    Article  Google Scholar 

  • Kim, S., Park, J., Yeom, S. I., Kim, Y. M., Seo, E., Kim, K. T., et al. (2017). New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biology, 18(1), 210.

    Article  Google Scholar 

  • Koskimäki, J. J., Hokkanen, J., Jaakola, L., Suorsa, M., Tolonen, A., & Mattila, S. (2009). Flavonoid biosynthesis and degradation play a role in early defense responses of blueberry (Vaccinium myrtillus) against biotic stress. European Journal of Plant Pathology, 125, 629–640.

    Article  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.

    Article  CAS  Google Scholar 

  • Liu, P., Dai, T., Chang, X., Hu, Z., Liang, L., Sun, M., & Liu, X. L. (2019). Untargeted metabolomics based on GC-MS and chemometrics: A new tool for the early diagnosis of strawberry anthracnose caused by Colletotrichum theobromicola. Plant Disease, PDIS-01-19-0219. https://doi.org/10.1094/PDIS-01-19-0219-RE.

    Article  Google Scholar 

  • Mahasuk, P., Taylor, P. W. J., & Mongkolporn, O. (2009). Identification of two new genes conferring resistance to Colletotrichum acutatum in Capsicum baccatum. Phytopathology, 99, 1100–1104.

    Article  CAS  Google Scholar 

  • Mikulic-Petkovsek, M., Schmitzer, V., Jakopic, J., Cunja, V., Veberic, R., Munda, A., & Stampar, F. (2013). Phenolic compounds as defence response of pepper fruit to Colletotrichum coccodes. Physiological and Molecular Plant Pathology, 84, 138–145.

    Article  CAS  Google Scholar 

  • Miles, T. D., Day, B., & Schilder, A. C. (2011). Identification of differentially expressed genes in a resistant versus a susceptible blueberry cultivar after infection by Colletotrichum acutatum. Molecular Plant Pathology, 12(5), 463–477.

    Article  CAS  Google Scholar 

  • Miles, T. D., Hancock, J., Callow, P., & Schilder, A. C. (2012). Evaluation of screening methods and fruit composition in relation to anthracnose fruit rot resistance in blueberries. Plant Pathology, 61, 555–566.

    Article  Google Scholar 

  • Mishra, R., Nanda, S., Rout, E., Chand, S. K., Mohanty, J. N., & Joshi, R. K. (2017). Differential expression of defense-related genes in chilli pepper infected with anthracnose pathogen Colletotrichum truncatum. Physiological and Molecular Plant Pathology, 97, 1–10.

    Article  CAS  Google Scholar 

  • Mishra, R., Rout, E., Mohanty, J. N., & Joshi, R. K. (2019). Sequence-tagged site-based diagnostic markers linked to a novel anthracnose resistance gene RCt1 in chili pepper (Capsicum annuum L.). Botanical Bulletin of the Academia Sinica, 9, 9. https://doi.org/10.1007/s13205-018-1552-0.

    Article  Google Scholar 

  • Nadella, K. D., Marla, S. S., & Kumar, P. A. (2012). Metabolomics in agriculture. J. Int. Biol., 16(4), 149–159.

    CAS  Google Scholar 

  • Park, S., Kim, S. H., Park, H. G., & Yoon, J. B. (2009). Capsicum germplasm resistance to pepper anthracnose differentially interacts with Colletotrichum isolates. Horticulture, Environment and Biotechnology, 50, 17–23.

    Google Scholar 

  • Park, S., Jeong, W. Y., Lee, J. H., Kim, Y. H., Jeong, S. W., Kim, G. S., Bae, D. W., Lim, C. S., Jin, L. S., Lee, S. J., & Shin, S. C. (2012). Determination of polyphenol levels variation in Capsicum annuum L. cv. Chelsea (yellow bell pepper) infected by anthracnose (Colletotrichum gloeosporioides) using liquid chromatography–tandem mass spectrometry. Food Chemistry, 130, 981–985.

    Article  CAS  Google Scholar 

  • Park, S., Park, A. R., Im, S., Han, Y. J., Lee, S., et al. (2014). Developmentally regulated sesquiterpene production confers resistance to Colletotrichum gloeosporioides in ripe pepper fruits. PLoS One, 9(10), e109453.

    Article  Google Scholar 

  • Pereira, M. J. Z., Massola, N. S., Sussel, A. A. B., Sala, F. C., Costa, C. P., & Boiteux, L. S. (2011). Reaction of Capsicum accessions and progenies from interspecific crosses to Colletotrichum acutatum isolates. Horticultura Brasileira, 29, 569–576.

    Article  Google Scholar 

  • Ranathunge, N. P., Mongkolporn, O., Ford, R., & Taylor, P. W. J. (2012). Colletotrichum truncatum pathosystem on Capsicum spp.: Infection, colonization and defence mechanisms. Australasian Plant Pathology, 41, 463–473.

    Article  Google Scholar 

  • Rao, S., & Nandineni, M. R. (2017). Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum. PLoS One, 12(8), e0183567.

    Article  Google Scholar 

  • Ruiz-Lau, N., Medina-Lara, F., Minero-Garcia, Y., Zamudio-Moreno, E., Guzman-Antonio, A., & Echevarria-Machado, I. (2011). Water deficit affects the accumulation of capsaicinoids in fruit of Capsicum chinense Jacq. Hortscience, 46, 487–492.

    Article  Google Scholar 

  • Saxena, A., Raghuwanshi, R., Gupta, V. K., & Singh, H. B. (2016). Chilli anthracnose: The epidemiology and management. Frontiers in Microbiology, 4, 1–18.

    Google Scholar 

  • Silva, S. A. M., Rodrigues, R., Gonçalves, L. S. A., Sudré, C. P., Bento, C. S., Carmo, M. G. F., & Medeiros, A. M. (2014). Resistance in Capsicum spp. to anthracnose affected by different stages of fruit development during pre- and post-harvest. Tropical Plant Pathology, 39, 335–341.

    Article  Google Scholar 

  • Silveira, P. R., Nascimento, K. J. T., Andrade, C. C. L., Bispo, W. M. S., Oliveira, J. R., & Rodrigues, F. A. (2015). Physiological changes in tomato leaves arising from Xanthomonas gardneri infection. Physiological and Molecular Plant Pathology, 92, 130–138.

    Article  CAS  Google Scholar 

  • Suwor, P., Thummabenjapone, P., Sanitchon, J., Kumar, S., Techawongstien, S. (2016). Role of two inoculation methods in the expression of anthracnose resistance gene in chili (Capsicum annuum L.). In III International Symposium on Postharvest Pathology: Using Science to Increase Food Availability, A. Ippolito et al., Eds, (pp. 207-214) SHS Acta Horticulturae 1144.

  • Tattersall, D. B., Heeswijck, R. V., & Hoj, P. B. (1997). Identification and characterization of a fruit-specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiology, 114, 759–769.

    Article  CAS  Google Scholar 

  • Yang, S., Gao, M., Xu, C., Gao, J., Deshpande, S., Lin, S., Roe, B. A., & Zhu, H. (2008). Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. PNAS, 105(34), 12164–12169.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Bernardo Ueno from the Plant Pathology Laboratory of Embrapa Temperate Agriculture, Pelotas for providing the Colletotrichum sp. isolate, SDECT-RS (Programa de Apoio aos Polos Tecnológicos) for financial support for research, and CNPq for financial support for research and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Clasen Chaves.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padilha, H.K.M., Madruga, N.d.A., Aranha, B.C. et al. Defense responses of Capsicum spp. genotypes to post-harvest Colletotrichum sp. inoculation. Phytoparasitica 47, 557–573 (2019). https://doi.org/10.1007/s12600-019-00756-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-019-00756-9

Keywords

Navigation