Skip to main content
Log in

An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

In this study fusaricidin, a cyclic depsipeptide isolated from Paenibacillus polymyxa E681 (E681), was demonstrated to control Phytophthora blight infection caused by Phytophthora capsici in red-pepper. The minimal inhibitory concentration (MIC) of fusaricidin was found to be 16 ppm against P. capsici. The disease severity of P. capsici was 40% at 0.1 ppm of fusaricidin when compared with water-treated control (81.7%) on post-treatment, whereas the disease severities on pre-treatment were 45% and 83.3% in fusaricidin (0.1 ppm) and water-treated control, respectively, in red-pepper plants. Significant (P < 0.05) disease suppression was observed on treatment with fusaricidin (0.1 ppm) by foliar spray and soil drench. The disease severity was drastically reduced to 3.3% by soil drench of fusaricidin (1.0 ppm), whereas in water-treated control, the disease severity was 83.3% in the first experiment. Fusaricidin at 0.1 ppm reduced disease severity of P. capsici to 27.5% when compared with positive control (43.1%) and water-treated control (66.2%) in the second experiment. Soft rot disease in tobacco was suppressed upon treatment with fusaricidin at 1.0 ppm by leaf infiltration. RT-PCR analyses of Arabidopsis thaliana revealed that there was an up-regulation of pathogenesis-related (PR) gene expression in wild type A. thaliana (Col-0), while there was no accumulation of PR genes, which implies that the mechanism of protection might be based on a salicylic acid-dependent pathway. This is the first report that fusaricidin exhibits protection against plant pathogens in addition to activity as an antibiotic agent. Hence, E681 can play a role in plant protection by secretion of ISR elicitors including fusaricidin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ash, C., Priest, F. G., & Collins, M. D. (1993). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek, 64, 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Beatty, P. H., & Jensen, S. E. (2002). Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology, 48, 159–169.

    Article  PubMed  CAS  Google Scholar 

  • Choi, O., Kim, J., Ryu, C. M., & Park, C. S. (2004). Colonization and population changes of a biocontrol agent, Paenibacillus polymyxa E681, in seeds and roots. Plant Pathology Journal, 20, 97–102.

    Article  CAS  Google Scholar 

  • Choi, S. K., Park, S. Y., Kim, R., Lee, C. H., Kim, J. F., & Park, S. H. (2008). Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochemical and Biophysical Research Communications, 365, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • De Lucca, A. J., Cleveland, T. E., & Wedge, D. E. (2005). Plant-derived antifungal proteins and peptides. Canadian Journal of Microbiology, 51, 1001–1014.

    Article  PubMed  Google Scholar 

  • Deahl, K. L., DeMuth, S. P., Pelter, G., & Ormrod, D. (1993). First report of resistance of Phytophthora infestans to metalaxyl in eastern Washington and southwestern British Columbia. Plant Disease, 77, 429.

    Article  Google Scholar 

  • Deo, N., & Natarajan, K. A. (1998). Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation. International Journal of Mineral Processing, 55, 41–60.

    Article  CAS  Google Scholar 

  • Dijksterhuis, J., Sanders, M., Gorris, L. G. M., & Smid, E. J. (1999). Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. Journal of Applied Microbiology, 86, 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Diz, M. S., Carvalho, A. O., Rodrigues, R., Neves-Ferreira, A. G., Da Cunha, M., Alves, E. W., et al. (2006). Antimicrobial peptides from chilli pepper seeds causes yeast plasma membrane permeabilization and inhibits the acidification of the medium by yeast cells. Biochimica et Biophysica Acta, 1760, 1323–1332.

    Article  PubMed  CAS  Google Scholar 

  • Emmert, E. A. B., & Handelsman, J. (1999). Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiology Letters, 171, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St Paul, MN, USA: American Phytopathological Society Press.

    Google Scholar 

  • Gavino, P. D., Smart, C. D., Sandrock, R. W., Miller, J. S., Hamm, P. B., Lee, T. Y., et al. (2000). Implications of sexual reproduction for Phytophthora infestans in the United States: generation of an aggressive lineage. Plant Disease, 84, 731–735.

    Article  Google Scholar 

  • Goodwin, S. B., Sujkowski, L. S., & Fry, W. E. (1996). Widespread distribution and probable origin of resistance to metalaxyl in clonal genotypes of Phytophthora infestans in the United States and Western Canada. Phytopathology, 86, 793–800.

    Article  CAS  Google Scholar 

  • Gouzou, L., Burtin, G., Philippy, R., Bartoli, F., & Heulin, T. (1993). Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: preliminary examination. Geoderma, 56, 479–491.

    Article  Google Scholar 

  • Hausbeck, M. K., & Lamour, K. H. (2004). Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Disease, 88, 1292–1303.

    Article  Google Scholar 

  • Helbig, J. (2001). Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (Isolate 18191). Journal of Phytopathology, 149, 265–273.

    Article  Google Scholar 

  • Homma, Y., & Suzui, T. (1989). Role of antibiotic production in suppression of radish damping-off by seed bacterization with Pseudomonas cepacia. Annual Phytopathological Society of Japan, 55, 643–652.

    Article  CAS  Google Scholar 

  • Hwang, B. K., & Kim, C. H. (1995). Phytophthora blight of pepper and its control in Korea. Plant Disease, 79, 221–227.

    Article  Google Scholar 

  • Kajimura, Y., & Kaneda, M. (1995). Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8, taxonomy, fermentation, isolation, structure elucidation and biological activity. The Journal of Antibiotics, 49, 129–135.

    Google Scholar 

  • Kajimura, Y., & Kaneda, M. (1997). Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8, isolation, structure elucidation and biological activity. The Journal of Antibiotics, 50, 220–228.

    Article  CAS  Google Scholar 

  • Kamoun, S., Huitema, E., & Vleeshouwers, V. G. A. A. (1999). Resistance to oomycetes: a general role for the hypersensitive response? Trends in Plant Science, 4, 1360–1385.

    Article  Google Scholar 

  • Katz, E., & Demain, A. L. (1977). The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriological Reviews, 41, 449–474.

    PubMed  CAS  Google Scholar 

  • Kishimoto, K., Matsui, K., Ozawa, R., & Takabayashi, J. (2005). Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant & Cell Physiology, 46, 1093–1102.

    Article  CAS  Google Scholar 

  • Lee, H. B., Kim, Y., Kim, J. C., Choi, G. J., Park, S. H., Kim, C. J., et al. (2005). Activity of some aminoglycoside antibiotics against true fungi, Phytophthora and Pythium species. Journal of Applied Microbiology, 99, 836–843.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, N., Chihara, S., & Koyama, Y. (1972). A new antibiotic, gatavalin. I. Isolation and characterization. The Journal of Antibiotics, 25, 243–247.

    Article  PubMed  CAS  Google Scholar 

  • Park, C., Paulitz, C. T., & Baker, R. (1988). Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum. Phytopathology, 78, 190–194.

    Article  Google Scholar 

  • Park, K. S., Diby, P., Kim, E., & Kloepper, J. W. (2007). Hyaluronic acid of Streptomyces sp. as a potent elicitor for induction of systemic resistance against plant diseases. World Journal of Microbial Biotechnology. doi:10.1007/s11274-007-9587-0.

  • Parra, G., & Ristaino, J. B. (2001). Resistance to mefonoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Disease, 85, 1069–1075.

    Article  CAS  Google Scholar 

  • Petersen, D. J., Srinivasan, M., & Chanway, C. P. (1996). Bacillus polymyxa stimulates increased Rhizobium etli populations and nodulation when co-resident in the rhizosphere of Phaseolus vulgaris. FEMS Microbiology Letters, 142, 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Pichard, B., Larue, J. P., & Thouvenot, D. (1995). Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiology Letters, 133, 215–218.

    Article  PubMed  CAS  Google Scholar 

  • Ploetz, R., Schnell, R. J., & Haynes, J. (2002). Variable response of open-pollinated seedling progeny of avocado to Phytophthora root rot. Phytoparasitica, 30, 262–268.

    Article  Google Scholar 

  • Ramarathnam, R., & Fernando, W. G. D. (2006). Preliminary phenotypic and molecular screening for potential bacterial biocontrol agents of Leptosphaeria maculans, the blackleg pathogen of canola. Biocontrol Science and Technology, 16, 567–582.

    Article  Google Scholar 

  • Raza, W., Yang, W., & Shen, Q. R. (2008). Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. Journal of Plant Pathology, 90, 403–414.

    Google Scholar 

  • Ristaino, J. B., & Johnston, S. A. (1999). Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Disease, 83, 1080–1089.

    Article  Google Scholar 

  • Ryu, C. M., & Park, C. S. (1997). Enhancement of plant growth induced by endospore forming PGPR strain, Bacillus polymyxa E681. Proceedings of the Fourth International Workshop on Plant Growth-Promoting Rhizobacteria, Japan-OECD Joint Workshop (Sapporo, Japan) pp. 209–211.

  • Ryu, C. M., Kim, J., Choi, O., Kim, S. H., & Park, C. S. (2006). Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biological Control, 39, 282–289.

    Article  Google Scholar 

  • Sunwoo, J. Y., Lee, K. Y., & Hwang, B. K. (1996). Induced resistance against Phytophthora capsici in pepper plants in response to DL-β-amino-n-butyric acid. European Journal of Plant Pathology, 102, 663–670.

    Article  CAS  Google Scholar 

  • Timmusk, S., & Wagner, E. G. H. (1999). The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Molecular Plant-Microbe Interaction, 12, 951–959.

    Article  CAS  Google Scholar 

  • Truper, H. G. (2005). The type species of the genus Paenibacillus polymyxa. Opinion 77 judicial commission of the international committee on systematics of prokaryotes correspondence. International Journal of Systematic and Evolutionary Microbiology, 55, 513.

    Article  Google Scholar 

  • Von Rad, U., Mueller, J. M., & Durner, J. (2004). Evaluation of natural and synthetic stimulants of plant immunity by microarray technology. New Phytologist, 165, 191–202.

    Article  Google Scholar 

  • Weller, D. M. (1988). Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379–407.

    Article  Google Scholar 

  • Xiao, K., Kinkel, L. L., & Samac, D. A. (2002). Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biological Control, 23, 285–295.

    Article  CAS  Google Scholar 

  • Yang, K. Y., Blee, K. A., Zang, S., & Anderson, A. J. (2004). Oxycom™ treatment suppresses Pseudomonas syringae infection and activates a mitogen-activated protein kinase pathway in tobacco. Physiological and Molecular Plant Pathology, 61, 249–256.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Academy of Agricultural Sciences (NAAS), South Korea, for providing financial assistance with the support of Cooperative Research Program for Agricultural Science & Technology Development (Project No. PJ0069010222011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungseok Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Cho, Y.E., Park, SH. et al. An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41, 49–58 (2013). https://doi.org/10.1007/s12600-012-0263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-012-0263-z

Keywords

Navigation