Skip to main content
Log in

Molecular diversity of binucleate Rhizoctonia AG-A in China

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

AG-A belongs to the binucleate Rhizoctonia (BNR) anastomosis group (AG) of the Ceratobasidium teleomorph, which parasitizes the roots of many plant species. Ninety nine isolate species of AG-A were obtained from Tibet, Sichuan, and Yunnan Province in China. All isolates were divided into three types based on their cultural characteristics. Type I: abundant aerial mycelia, dense hyphae, loose sclerotia; Type II: abundant aerial mycelia, no sclerotia. Type III: sparse aerial mycelium and no sclerotia. All of the isolates infected the seedlings of Chinese mustard and Chinese cabbage, causing the formation of lesions on the stem and a brown discoloration of the roots. Sequence analysis of the 5.8S rDNA-ITS showed a similarity of 98–100% among the isolates. Inter Simple Sequence Repeat (ISSR) was used to detect genetic variation in binucleate Rhizoctonia spp. Forty two AG-A isolates were amplified using 15 random primers. From a total of 164 bands, 144 bands (87.8%) were polymorphic in the 42 tested isolates. A dendrogram showing genetic relationships between the isolates was constructed using unweighted pair-group averages based on genetic distances. According to the dendrogram, the 42 tested isolates could be aligned into three clusters with a genetic similarity coefficient of 0.29, the first clusters including 27 isolates with III of culture characteristics on PDA; the second clusters included eight isolates with I of cultural characteristics on PDA; the third cluster included seven isolates with II of cultural characteristics on PDA. The results of ISSR analysis showed an association between the hosts of these isolates. Our results showed that ISSR analysis can reveal more molecular variation among isolates of AG-A than sequence analysis using the 5.8S rDNA-ITS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Guleria, S., Aggarwal, R., Thind, T. S., & Sharma, T. R. (2007). Morphological and pathological variability in rice isolates of Rhizoctonia solani and molecular analysis of their genetic variability. Journal of Phytopathology, 155, 654–661.

    Article  CAS  Google Scholar 

  • Hillis, D. M., & Dixon, M. T. (1991). Ribosomal DNA: Molecular evolution and phylogenetic inference. The Quarterly Review of Biology, 66, 411–453.

    Article  PubMed  CAS  Google Scholar 

  • Hong, S. B., Go, S. J., Ryu, J. C., Kim, W. G., & Kim, I. S. (1998). Differentiation of intraspecific groups within Korean isolates of Rhizoctonia solani using PCR-RFLP of ribosomal DNA. Korean Journal of Plant Pathology, 14, 157–163. (in Korean, with English abstract).

    Google Scholar 

  • Hyakumachi, M., Priyatmojo, A., Kubota, M., & Fukui, H. (2005). New anastomosis groups, AG-T and AG-U, of binucleate Rhizoctonia causing root and stem rot of cut-flower and miniature roses. Phytopathology, 95, 784–792.

    Article  PubMed  Google Scholar 

  • Ichielevich-Auster, M., Sneh, B., Barash, I., & Koltin, Y. (1985). Pathogenicity, host specificity and anastomosis groups of Rhizoctonia spp. isolated from soils in Israel. Phytoparasitica, 13, 103–112.

    Article  Google Scholar 

  • Kuninaga, S., Natsuaki, T., & Takeuchi, T. (1997). Sequence variation of the rDNA- ITS regions within and between anastomosis groups in Rhizoctonia solani. Current Genetics, 32, 237–243.

    Article  PubMed  CAS  Google Scholar 

  • Kuzoff, R. K., Sweere, J. A., Soltis, D. E., Soltis, P. S., & Zimmer, E. A. (1998). The phylogenetic potential of entire 26S rDNA sequences in plants. Molecular Biology and Evolution, 15, 251–263.

    PubMed  CAS  Google Scholar 

  • Larson, A. (1991). Evolutionary analysis of length-variable sequences: Divergent domains of ribosomal RNA. In M. M. Miyamoto & J. Cracraft (Eds.), Phylogenetic analysis of DNA sequences (pp. 221–248). New York, NY: Oxford University Press.

    Google Scholar 

  • Mahdiyeh, K., Naser, S., & Masoud, S. (2009). Genetic diversity of Iranian AG1-IA isolates of Rhizoctonia solani, the cause of rice sheath blight, using morphological and molecular markers. Journal of Phytopathology, 157, 708–714.

    Article  Google Scholar 

  • Martin, S. B. (1988). Identification, isolation frequency, and pathogenicity of anastomosis groups of binucleate Rhizoctonia spp. from strawberry roots. Phytopathology, 78, 379–384.

    Article  Google Scholar 

  • Mazzola, M. (1997). Identification and pathogenicity of Rhizoctonia spp. isolated from apple roots and orchard soils. Phytopathology, 87, 582–587.

    Article  PubMed  CAS  Google Scholar 

  • Raeder, V., & Broda, P. (1985). Rapid preparation of DNA from filaments fungi. Letters in Applied Microbiology, 1, 17–20.

    Article  CAS  Google Scholar 

  • Salazar, O., Julian, M. C., & Rubio, V. (2000). Primers based on specific rDNA-ITS sequences for PCR detection of Rhizoctonia solani, R. solani AG2 subgroups and ecological types, and binucleate Rhizoctonia. Mycological Research, 104, 281–285.

    Article  CAS  Google Scholar 

  • Sharon, M., Kuninaga, S., Hyakumachi, M., Naito, S., & Sneh, B. (2008). Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience, 49, 93–114.

    Article  CAS  Google Scholar 

  • Sneh, B., Sharon, M., Kuninaga, S., & Hyakumachi, M. (2006). The advancing identification and classification of Rhizoctonia spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience, 47, 299–316.

    Article  Google Scholar 

  • Sneh, B., Burpee, L., & Ogoshi, A. (1998). Identification of Rhizoctonia species. St. Paul, MN, USA: The American Phytopathological Society.

    Google Scholar 

  • Spatafora, J. W., & Blackwell, M. (1993). Molecular systematics of unitunicate perithecial ascomycetes: The Clavicipitales–Hypocreales connection. Mycologia, 85, 912–922.

    Article  CAS  Google Scholar 

  • Stepansky, A., Kovalski, R., & Perl-Treves, I. (1999). Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Systematics and Evolution, 217, 313–332.

    Article  CAS  Google Scholar 

  • Swann, E. C., & Taylor, J. W. (1993). Higher taxa of Basidiomycetes: An 18SrRNA gene perspective. Mycologia, 85, 923–936.

    Article  CAS  Google Scholar 

  • Toda, T., Hyakumachi, M., Suga, H., Kageyama, K., Tanaka, A., & Tani, T. (1999). Differentiation of Rhizoctonia AG-D isolates from turfgrass into subgroups I and II based on rDNA and RAPD analysis. European Journal of Plant Pathology, 105, 835–846.

    Article  CAS  Google Scholar 

  • Toda, T., Nasu, H., Kageyama, K., & Hyakumachi, M. (1998). Genetic identification of web-blight fungus (Rhizoctonia solani AG1) obtained from European pear using RFLP of rDNA-ITS and RAPD analyses. Research Bulletin of the Faculty College of Agriculture Gifu University, 63, 1–9.

    CAS  Google Scholar 

  • Vilgalys, R., & Sun, B. L. (1994). Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 91, 4599–4603.

    Article  PubMed  CAS  Google Scholar 

  • Yang, G. H., Chen, H. R., Naito, S., & Ogoshi, A. (2005a). Characterization of Rhizoctonia solania AG 4HG-III causing stem canker and wirestem on Green amaranth and Chinese amaranth. Journal of Phytopathology, 153, 185–187.

    Article  Google Scholar 

  • Yang, G. H., Chen, H. R., Naito, S., Ogoshi, A., & Deng, Y. L. (2005b). First report of AG-A of binucleate Rhizoctonia in China, pathogenic to soybean, pea, snap bean and pak choy. Journal of Phytopathology, 153, 333–336.

    Article  CAS  Google Scholar 

  • Yang, G. H., Chen, H. R., Naito, S., Wu, J. Y., He, X. H., & Duan, C. F. (2005c). Occurrence of foliar rot of pak choy and Chinese mustard caused by Rhizoctonia solani AG-1 IB in China. Journal of General Plant Pathology, 71, 377–379.

    Article  Google Scholar 

  • Zhang, M., & Dernoeden, P. H. (1995). Facilitating anastomosis grouping of Rhizoctonia solani isolates from cool season turfgrasses. Hortscience, 30, 1260–1262.

    Google Scholar 

Download references

Acknowledgments

The research was supported by National Natural Science Fund (30660006) and Science and technology projects in Yunnan Tobacco Company (09YN006). We appreciate the assistance of Dr. Robert L. Conner of the Morden Research Station of Agriculture and Agri-Food Canada and Prof. Michael A. Fullen of The University of Wolverhampton, UK, who reviewed this manuscript very carefully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Yang.

Additional information

L. P. Lei is a Co-first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.Q., Lei, L.P., Dong, W.H. et al. Molecular diversity of binucleate Rhizoctonia AG-A in China. Phytoparasitica 39, 461–470 (2011). https://doi.org/10.1007/s12600-011-0187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-011-0187-z

Keywords

Navigation