Skip to main content
Log in

Novel twinned Al3Sc dendrites in as-casted Al–Sc alloy

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

Al-Sc alloys with high Sc contents are served as sputtering targets for making high performance piezoelectric devices. The microstructure of these alloys would affect the sputtering process and the final quality of the functional devices. In this study, the microstructure in as-casted Al-20%Sc (atomic fraction) alloys is characterized and the feathery Al3Sc grains with twin relationships are reported for the first time. The crystallographic features of twined structures and growth directions are quantitatively analysed by electron backscatter diffraction (EBSD) technique. The twinning plane is parallel to {111} planes and growth direction is along <110> directions in Al3Sc. In addition, the twinned structures are affected by both the Sc content and cooling rate. The twinned grains are found in the alloy with high Sc content rather than lower alloyed samples and the density of the twin boundaries increases with increasing the cooling rate due to the refinement of the microstructure.

摘要

高Sc含量Al-Sc合金靶材是用于制造高性能压电器件的重要材料。AlSc合金的微观结构显著影响靶材溅射工艺以及功能器件的最终质量。在本研究中,作者对铸态Al-20% Sc(原子分数)合金的微观结构进行了详细表征,并首次报道了具有孪晶关系的羽毛状Al3Sc晶粒。作者采用电子背散射衍射技术(EBSD)定量分析了孪晶结构和生长方向的晶体学特征。结果发现:在Al3Sc合金的铸态组织中,孪晶面平行于{111}面,生长方向沿<110>方向。此外,孪晶结构受Sc含量和冷却速率的影响显著。在高Sc含量的合金中发现了孪晶,而低S含量的合金中则没有发现孪晶。由于微观结构的细化,孪晶的密度随着冷却速度的增加而增加。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

All data are contained within the article.

References

  1. Akiyama M, Kamohara T, Kano K, Teshigahara A, Takeuchi Y, Kawahara N. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv Mater. 2009;21(5):593. https://doi.org/10.1002/adma.200802611.

    Article  CAS  Google Scholar 

  2. Fu YQ, Luo J, Nguyen NT, Walton A, Flewitt AJ, Zu XT, Li Y, McHale G, Matthews A, Iborra E. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog Mater Sci. 2017;89:31. https://doi.org/10.1016/j.pmatsci.2017.04.006.

    Article  CAS  Google Scholar 

  3. Mikolajick T, Slesazeck S, Mulaosmanovic H, Park M, Fichtner S, Lomenzo P, Hoffmann M, Schroeder U. Next generation ferroelectric materials for semiconductor process integration and their applications. J Appl Phys. 2021;129(10):100901. https://doi.org/10.1063/5.0037617.

    Article  CAS  Google Scholar 

  4. Song Y, Perez C, Esteves G, Lundh JS, Saltonstall CB, Beechem TE, Yang JI, Ferri K, Brown JE, Tang Z. Thermal conductivity of aluminum scandium nitride for 5G mobile applications and beyond. ACS Appl Mater Interfaces. 2021;13(16):19031. https://doi.org/10.1021/ACSAMI.1C02912.

    Article  CAS  Google Scholar 

  5. Xie BW, Ding FZ, Shang HJ, Huang DX, Li TG, Zou Q, Zhang JL, Gu HW. Substrate angle-induced fully c-axis orientation of AlN films deposited by off-normal DC sputtering method. Rare Met. 2021;40(12):3668. https://doi.org/10.1007/s12598-020-01675-z.

    Article  CAS  Google Scholar 

  6. Tasnadi F, Alling B, Höglund C, Wingqvist G, Birch J, Hultman L, Abrikosov IA. Origin of the anomalous piezoelectric response in wurtzite ScxAl1xN alloys. Phys Rev Lett. 2010;104(13):137601. https://doi.org/10.1103/PhysRevLett.104.137601.

    Article  CAS  Google Scholar 

  7. Akiyama M, Kano K, Teshigahara A. Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl Phys Lett. 2009;95(16):162107. https://doi.org/10.1063/1.3251072.

    Article  Google Scholar 

  8. Piazza G, Felmetsger V, Muralt P, Olsson RH III, Ruby R. Piezoelectric aluminum nitride thin films for microelectromechanical systems. MRS Bull. 2012;37(11):1051. https://doi.org/10.1557/mrs.2012.268.

    Article  CAS  Google Scholar 

  9. Men K, Liu H, Wang X, Jia Q, Ding Z, Wu H, Wu D, Xiong Y. AlScN films prepared by alloy targets and SAW device characteristics. J Rare Earths. 2022. https://doi.org/10.1016/j.jre.2022.03.009.

    Article  Google Scholar 

  10. Ding Z, Cao X, Jia Q, Zhang X. Preparation and performance of AlSc alloy targets. AIP Conference Proceedings, AIP Publishing LLC. 2022.020029.

  11. Yasuoka S, Shimizu T, Tateyama A, Uehara M, Yamada H, Akiyama M, Hiranaga Y, Cho Y, Funakubo H. Effects of deposition conditions on the ferroelectric properties of (Al1xScx)N thin films. J Appl Phys. 2020;128(11):1103. https://doi.org/10.1063/5.0015281.

    Article  CAS  Google Scholar 

  12. Gschneidner K, Calderwood F. The Al-Sc (aluminum-scandium) system. Bull Alloy Phase Diagr. 1989;10(1):34. https://doi.org/10.1007/BF02882170

    Article  CAS  Google Scholar 

  13. Zhao Y, Zhang W, Koe B, Du W, Wang M, Wang W, Boller E, Rack A, Sun Z, Mi J. 3D characterization of the primary Al3Sc phases in an Al-Sc alloy using synchrotron X-ray tomography and electron microscopy. 2019. https://doi.org/10.48550/arXiv.1909.09388.

  14. Marquis E, Seidman DN. Nanoscale structural evolution of Al3Sc precipitates in Al (Sc) alloys. Acta Mater. 2001;49(11):1909. https://doi.org/10.1016/S1359-6454(01)00116-1.

    Article  CAS  Google Scholar 

  15. Zhang JY, Gao YH, Yang C, Zhang P, Kuang J, Liu G, Sun J. Microalloying Al alloys with Sc: a review. Rare Met. 2020;39(6):636. https://doi.org/10.1007/s12598-020-01433-1.

    Article  CAS  Google Scholar 

  16. Wang Y, Xiong BQ, Li ZH, Huang SH, Wen K, Li XW, Zhang YA. As-cast microstructure of Al–Zn–Mg–Cu–Zr alloy containing trace amount of Sc. Rare Met. 2019;38(4):343. https://doi.org/10.1007/s12598-018-1136-5.

    Article  CAS  Google Scholar 

  17. Jiang A, Wang X. Dendritic and seaweed growth of proeutectic scandium tri-aluminide in hypereutectic Al-Sc undercooled melt. Acta Mater. 2020;200:56. https://doi.org/10.1016/j.actamat.2020.08.078.

    Article  CAS  Google Scholar 

  18. Yan K, Chen Z, Zhao Y, Ren C, Lu W, Aldeen A. Morphological characteristics of Al3Sc particles and crystallographic orientation relationships of Al3Sc/Al interface in cast Al-Sc alloy. J Alloys Compd. 2021;861:1491. https://doi.org/10.1016/J.JALLCOM.2020.158491.

    Article  Google Scholar 

  19. Gu XF, Furuhara T, Zhang WZ. PTCLab: free and open-source software for calculating phase transformation crystallography. J Appl Crystallogr. 2016;49(3):1099. https://doi.org/10.1107/S1600576716006075.

    Article  CAS  Google Scholar 

  20. Henry S, Rappaz M, Jarry P. <110> dendrite growth in aluminum feathery grains. Metall Mater Trans A. 1998;29(11):2807. https://doi.org/10.1007/S11661-998-0321-9.

    Article  Google Scholar 

  21. Salgado-Ordorica M, Rappaz M. Twinned dendrite growth in binary aluminum alloys. Acta Mater. 2008;56(19):5708. https://doi.org/10.1016/j.actamat.2008.07.046.

    Article  CAS  Google Scholar 

  22. Yang L, Li S, Chang X, Zhong H, Fu H. Twinned dendrite growth during Bridgman solidification. Acta Mater. 2015;97:269. https://doi.org/10.1016/j.actamat.2015.07.008.

    Article  CAS  Google Scholar 

  23. Henry S, Minghetti T, Rappaz M. Dendrite growth morphologies in aluminium alloys. Acta Mater. 1998;46(18):6431. https://doi.org/10.1016/S1359-6454(98)00308-5.

    Article  CAS  Google Scholar 

  24. Yang L, Li S, Li Y, Fan K, Zhong H. Study of growth advantage of twinned dendrites in aluminum alloys during Bridgman solidification. J Mater Res. 2019;34(2):240. https://doi.org/10.1557/jmr.2018.344.

    Article  CAS  Google Scholar 

  25. Chen M, Yan Y, Liu WM, Zhou C, Guo ZQ, Zhang XF, Wang YL, Li L, Zhang GL. Research advances and industrialization prospects of all-solid-state thin-film lithium battery. J Aeronaut Mater. 2014;34(6):1. https://doi.org/10.11868/j.issn.1005-5053.2014.6.001.

    Article  CAS  Google Scholar 

  26. Porter DA, Easterling KE. Phase transformations in metals and alloys (Revised Reprint). Boca Raton: CRC Press. 2009. 1.

    Book  Google Scholar 

  27. Christian JW. The classical theory of nucleation. In: Christian JW, editor. The theory of transformations in metals and alloys. Oxford: Pergamon. 2002. 422.

    Chapter  Google Scholar 

  28. Rahaman M, Razumovskiy V, Johansson B, Ruban A. Temperature dependence of stacking-fault and anti-phase boundary energies in Al3Sc from ab initio calculations. Philos Mag. 2013;93(25):3423. https://doi.org/10.1080/14786435.2013.810817.

    Article  CAS  Google Scholar 

  29. Geng B, Li Y, Zhou R, Wang Q, Jiang Y. Formation mechanism of stacking faults and its effect on hardness in M7C3 carbides. Mater Charact. 2020;170:1691. https://doi.org/10.1016/j.matchar.2020.110691.

    Article  CAS  Google Scholar 

  30. Woo W, Jeong J, Kim DK, Lee C, Choi SH, Suh JY, Lee S, Harjo S, Kawasaki T. Stacking fault energy analyses of additively manufactured stainless steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction. Sci Rep. 2020;10(1):1350. https://doi.org/10.1038/s41598-020-58273-3.

    Article  CAS  Google Scholar 

  31. Dragnevski K, Cochrane R, Mullis A. The solidification of undercooled melts via twinned dendritic growth. Metall Mater Trans A. 2004;375:547. https://doi.org/10.1016/j.msea.2003.10.135.

    Article  CAS  Google Scholar 

  32. Henry S, Gruen GU, Rappaz M. Influence of convection on feathery grain formation in aluminum alloys. Metall Mater Trans A. 2004;35(8):2495. https://doi.org/10.1007/s11661-006-0229-1.

    Article  Google Scholar 

  33. Turchin A, Zuijderwijk M, Pool J, Eskin D, Katgerman L. Feathery grain growth during solidification under forced flow conditions. Acta Mater. 2007;55(11):3795. https://doi.org/10.1016/j.actamat.2007.02.030.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2017YFB0405901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-Xiao Hui.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XQ., Wang, Y., Jia, Q. et al. Novel twinned Al3Sc dendrites in as-casted Al–Sc alloy. Rare Met. 42, 838–843 (2023). https://doi.org/10.1007/s12598-023-02276-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02276-2

Navigation