Skip to main content

Advertisement

Log in

Development of Ti0.85Zr0.17(Cr-Mn-V)1.3Fe0.7-based Laves phase alloys for thermal hydrogen compression at mild operating temperatures

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

金属氢化物是静态氢压缩装置的核心材料, 需要具备与静态氢压缩工艺参数相匹配的储氢性能。本文针对水浴温区工作条件的静态氢压缩目标, 对Ti0.85Zr0.17(Cr-Mn-V)1.3Fe0.7系合金展开了系统研究。结果表明, 所有Ti0.85Zr0.17(Cr-Mn-V)1.3Fe0.7系储氢合金均具有成分分布均一的C14 型Laves单相结构。随Ti0.85Zr0.17Cr1.2-xMnxFe0.7V0.1 (x = 0, 0.1, 0.2, 0.3)合金中Mn取代Cr含量的增加, 合金的坪台氢压、储氢容量都呈现上升趋势, 坪台斜率也有所下降, 但吸放氢滞后效应增大; 随Ti0.85Zr0.17Cr1.0+yMn0.2Fe0.7V0.1-y (y = 0, 0.05, 0.10)合金中V取代Cr含量的减少, 合金的坪台氢压上升, 但储氢容量略有下降。在所研究的样品中, Ti0.85Zr0.17Cr1.1Mn0.2Fe0.7合金具有较佳综合性能, 拥有1.67 wt%储氢容量与21.09 kJ/mol H2放氢焓变, 其在293 K下吸氢平衡压为5.08 MPa, 在363 K下放氢平衡压为24.90 MPa, 能够满足静态氢压缩装置的性能要求。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang QD, Chen CP, Lei YQ. The recent research, development and industrial applications of metal hydrides in the People’s Republic of China. J Alloy Compd. 1997;253:629.

    Article  Google Scholar 

  2. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414(6861):353.

    Article  CAS  Google Scholar 

  3. Mazloomi K, Gomes C. Hydrogen as an energy carrier: prospects and challenges. Renew Sustain Energy Rev. 2012;16(5):3024.

    Article  CAS  Google Scholar 

  4. Balat M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrog Energy. 2008;33(15):4013.

    Article  CAS  Google Scholar 

  5. Jiang W, Wang H, Zhu M. AlH3 as a hydrogen storage material: recent advances, prospects and challenges. Rare Met. 2021;40(12):3337.

    Article  CAS  Google Scholar 

  6. Liu XS, Liu HZ, Qiu N, Zhang YB, Zhao GY, Xu L, Lan ZQ, Guo J. Cycling hydrogen desorption properties and microstructures of MgH2-AlH3-NbF5 hydrogen storage materials. Rare Met. 2021;40(4):1003.

    Article  CAS  Google Scholar 

  7. Lototskyy MV, Yartys VA, Pollet BG, Bowman RC Jr. Metal hydride hydrogen compressors: a review. Int J Hydrog Energy. 2014;39(11):5818.

    Article  CAS  Google Scholar 

  8. Sdanghi G, Maranzana G, Celzard A, Fierro V. Review of the current technologies and performances of hydrogen compression for stationary and automotive applications. Renew Sustain Energy Rev. 2019;102:150.

    Article  CAS  Google Scholar 

  9. Chen CP, Ye Z, Wu J, Wang QD. The properties and some applications of the hydride hydrogen-compression alloy (CaMmCu)(NiAl)5Zr0.05. Z Phys Chem -Int J Res Phys Chem Chem Phys. 1994;183:251.

    CAS  Google Scholar 

  10. Cieslik J, Kula P, Filipek SM. Research on compressor utilizing hydrogen storage materials for application in heat treatment facilities. J Alloy Compd. 2009;480(2):612.

    Article  CAS  Google Scholar 

  11. Galvis EAR, Leardini F, Ares JR, Cuevas F, Fernandez JF. Simulation and design of a three-stage metal hydride hydrogen compressor based on experimental thermodynamic data. Int J Hydrog Energy. 2018;43(13):6666.

    Article  CAS  Google Scholar 

  12. Goshome K, Endo N, Tetsuhiko M. Evaluation of a BCC alloy as metal hydride compressor via 100 MPa-class high-pressure hydrogen apparatus. Int J Hydrog Energy. 2019;44(21):10800.

    Article  CAS  Google Scholar 

  13. Hopkins RR, Kim KJ. Hydrogen compression characteristics of a dual stage thermal compressor system utilizing LaNi5 and Ca0.6Mm0.4Ni5 as the working metal hydrides. Int J Hydrog Energy. 2010;35(11):5693.

    Article  CAS  Google Scholar 

  14. Laurencelle F, Dehouche Z, Goyette J, Bose TK. Integrated electrolyser - metal hydride compression system. Int J Hydrog Energy. 2006;31(6):762.

    Article  CAS  Google Scholar 

  15. Laurencelle F, Dehouche Z, Morin F, Goyette J. Experimental study on a metal hydride based hydrogen compressor. J Alloy Compd. 2009;475(1–2):810.

    Article  CAS  Google Scholar 

  16. Muthukumar P, Maiya AP, Murthy SS. Performance tests on a thermally operated hydrogen compressor. Int J Hydrog Energy. 2008;33(1):463.

    Article  CAS  Google Scholar 

  17. Muthukumar P, Maiya AP, Murthy SS. Experiments on a metal hydride based hydrogen compressor. Int J Hydrog Energy. 2005;30(8):879.

    Article  CAS  Google Scholar 

  18. Selvaraj S, Jain A, Kumar S, Zhang T, Isobe S, Miyaoka H, Kojima Y, Ichikawa T. Study of cyclic performance of V-Ti-Cr alloys employed for hydrogen compressor. Int J Hydrog Energy. 2018;43(5):2881.

    Article  CAS  Google Scholar 

  19. Selvaraj S, Jain A, Miyaoka H, Kojima Y, Ichikawa T. Hydrogen sorption and cyclic compressor performance of V40Ti21.5Cr33.5M5 M = Nb, Zr. Fe alloys J Jpn Inst Energy. 2019;98(7):157.

    Article  CAS  Google Scholar 

  20. Shmal’ko YF, Ivanovsky AI, Lototsky MV, Kolosov VI, Volosnikov DV. Sample pilot plant of industrial metal-hydride compressor. Int J Hydrog Energy. 1999;24(7):645.

    Article  CAS  Google Scholar 

  21. Vanmal HH. LaNi5-hydride thermal absorption compressor for a hydrogen refrigerator. Chem Ing Tech. 1973;45(2):80.

    Article  CAS  Google Scholar 

  22. Wang X, Chen R, Zhang Y, Chen C, Wang Q. Hydrogen storage properties of (La-Ce-Ca)Ni5 alloys and application for hydrogen compression. Mater Lett. 2007;61(4–5):1101.

    Article  CAS  Google Scholar 

  23. Kumar S, Jain A, Ichikawa T, Kojima Y, Dey GK. Development of vanadium based hydrogen storage material: a review. Renew Sustain Energy Rev. 2017;72:791.

    Article  CAS  Google Scholar 

  24. Sharma VK, Satheesh A, Kumar EA. Performance investigation of a two-stage sorption hydrogen compressor. Int J Hydrog Energy. 2021;46(33):17282.

    Article  CAS  Google Scholar 

  25. Galvis EAR, Leardini F, Ares JR, Cuevas F, Fernandez JF. Experimental behaviour of a three-stage metal hydride hydrogen compressor. J Phys Energy. 2020;2(3):034006.

    Article  CAS  Google Scholar 

  26. Smith DB, Bowman RC Jr, Anovitz LM, Corgnale C, Sulic M. Isotherm measurements of high-pressure metal hydrides for hydrogen compressors. J Phys Energy. 2021;3(3):034004.

    Article  CAS  Google Scholar 

  27. Nayebossadri S, Book D. Development of a high-pressure Ti-Mn based hydrogen storage alloy for hydrogen compression. Renew Energy. 2019;143:1010.

    Article  CAS  Google Scholar 

  28. Corgnale C, Sulic M. High pressure thermal hydrogen compression employing Ti1.1CrMn metal hydride material. J Phys Energy. 2020;2(1):014003.

    Article  CAS  Google Scholar 

  29. Wang XH, Bei Y, Song XC, Fang GH, Li SQ, Chen CP, Wang QD. Investigation on high-pressure metal hydride hydrogen compressors. Int J Hydrog Energy. 2007;32(16):4011.

    Article  CAS  Google Scholar 

  30. Wang X, Liu H, Li H. A 70 MPa hydrogen-compression system using metal hydrides. Fuel Energy Abstr. 2011;36(15):9079.

    CAS  Google Scholar 

  31. Li H, Wang XH, Dong ZH, Xu L, Chen CP. A study on 70 MPa metal hydride hydrogen compressor. J Alloy Compd. 2010;502(2):503.

    Article  CAS  Google Scholar 

  32. Wang X, Chen R, Li S, Chen L, Ge H, Fang G, Chen C. Study on Ti-Mn/Ti-Cr hydrogen storage alloys for hydride hydrogen compressor. Rare Met Mater Eng. 2007;36(12):2216.

    CAS  Google Scholar 

  33. Lundin CE, Lynch FE, Magee CB. Correlation between interstitial hole sizes in intermetallic compounds and thermodynamic properties of hydrides formed from those compounds. J Less-Common Met. 1977;56(1):19.

    Article  CAS  Google Scholar 

  34. Zhou PP, Cao ZM, Xiao XZ, Zhan LJ, Li SQ, Li ZN, Jiang LJ, Chen LX. Development of Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage. J Alloy Compd. 2021;875:160035.

    Article  CAS  Google Scholar 

  35. Chen ZW, Xiao XZ, Chen LX, Fan XL, Liu LX, Li SQ, Ge HW, Wang QD. Development of Ti-Cr-Mn-Fe based alloys with high hydrogen desorption pressures for hybrid hydrogen storage vessel application. Int J Hydrog Energy. 2013;38(29):12803.

    Article  CAS  Google Scholar 

  36. dos Santos DS, Bououdina M, Fruchart D. Structural and thermodynamic properties of the pseudo-binary TiCr2–xVx compounds with 0.0 ≤ x ≤ 1.2. J Alloy Compd. 2002;340(1–2):101.

  37. Huang T, Wu Z, Feng S, Chen J, Xia B, Xu N. Influence of partial substitution of vanadium for chromium on hydrogen storage performance of TiCr based alloys. Chinese J Nonferrous Met. 2005;15(1):141.

    CAS  Google Scholar 

  38. Hang ZM, Chen LX, Xiao XZ, Li SQ, Chen CP, Lei YQ, Wang QD. The effect of Cr content on the structural and hydrogen storage characteristics of Ti10V80-xFe6Zr4Crx (x = 0–14) alloys. J Alloy Compd. 2010;493(1–2):396.

    Article  CAS  Google Scholar 

  39. Hang ZM, Xiao XZ, Yu KR, Li SQ, Chen CP, Chen LX. Influence of Fe content on the microstructure and hydrogen storage properties of Ti16Zr5Cr22V57-xFex (x = 2–8) alloys. Int J Hydrog Energy. 2010;35(15):8143.

    Article  CAS  Google Scholar 

  40. Matsunaga T, Kon M, Washio K, Shinozawa T, Ishikiriyama M. TiCrVMo alloys with high dissociation pressure for high-pressure MH tank. Int J Hydrog Energy. 2009;34(3):1458.

    Article  CAS  Google Scholar 

  41. Cao ZM, Zhou PP, Xiao XZ, Zhan LJ, Li ZN, Wang SM, Chen LX. Investigation on Ti-Zr-Cr-Fe-V based alloys for metal hydride hydrogen compressor at moderate working temperatures. Int J Hydrog Energy. 2021;46(41):21580.

    Article  CAS  Google Scholar 

  42. Chen ZW, Xiao XZ, Chen LX, Fan XL, Liu LX, Li SQ, Ge HW, Wang QD. Influence of Ti super-stoichiometry on the hydrogen storage properties of Ti1+xCr1.2Mn0.2Fe0.6 (x = 0–0. 1) alloys for hybrid hydrogen storage application. J Alloy Compd. 2014;585:307.

  43. Yao ZD, Liu LX, Xiao XZ, Wang CT, Jiang LJ, Chen LX. Effect of rare earth doping on the hydrogen storage performance of Ti1.02Cr1.1Mn0.3Fe0.6 alloy for hybrid hydrogen storage application. J Alloy Compd. 2018;731:524.

  44. Liu L, Chen L, Xiao X, Xu C, Sun J, Li S, Ge H, Jiang L. Influence of annealing treatment on the microstructure and hydrogen storage performance of Ti1.02Cr1.1Mn0.3Fe0.6 alloy for hybrid hydrogen storage application. J Alloy Compd. 2015;636:117.

  45. Cao ZJ, Ouyang L, Wang H, Liu J, Sun L, Zhu M. Composition design of Ti-Cr-Mn-Fe alloys for hybrid high-pressure metal hydride tanks. J Alloy Compd. 2015;639:452.

    Article  CAS  Google Scholar 

  46. Cao ZJ, Ouyang LZ, Wang H, Liu JW, Sun DL, Zhang QA, Zhu M. Advanced high-pressure metal hydride fabricated via Ti-Cr-Mn alloys for hybrid tank. Int J Hydrog Energy. 2015;40(6):2717.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (No. 2019YFB1505100), the National Natural Science Foundation of China (No. U20A20237) and Zhejiang Provincial Natural Science Foundation of China (No. LZ21E010002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Zhang Xiao or Li-Xin Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, ZM., Zhou, PP., Xiao, XZ. et al. Development of Ti0.85Zr0.17(Cr-Mn-V)1.3Fe0.7-based Laves phase alloys for thermal hydrogen compression at mild operating temperatures. Rare Met. 41, 2588–2594 (2022). https://doi.org/10.1007/s12598-022-01962-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01962-x

Navigation