Skip to main content

Advertisement

Log in

Suppression mechanisms on proliferation of glioma U251 cells by FePt nanoparticles through intracellular oxidative stress

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical Abstract

摘要

FePt纳米粒子 (NPs) 以其优异的超顺磁性和抗癌活性在生物医学领域引起了广泛的关注, 作为MRI/CT造影剂和纳米抗癌药物在肿瘤检测和治疗中具有巨大的应用潜力。在本研究中, 我们研究了FePt NPs对神经胶质瘤U251细胞增殖的抑制机制。不同浓度的FePt NPs与U251细胞共培养, 通过检测细胞内各种氧化还原酶的活性和几种凋亡相关蛋白的表达, 研究细胞内的氧化应激状态。细胞活性测定表明: 5 μg·ml-1 的FePt NPs处理24小时后, 对U251细胞增殖的最高抑制率约为10.5%±5.6%。在这种情况下, LDH释放显著增加。流式细胞术和荧光染色分析表明, FePt-NPs促进U251细胞凋亡和G0/G1期阻滞。生化分析表明: 不同浓度的FePt NPs处理后, U251细胞的氧化还原酶 (SOD, CAT和GPx) 活性显著降低, 同时细胞内脂质过氧化产物 (MDA) 水平升高。Western blotting分析进一步表明: FePt NPs上调促凋亡蛋白Bax的表达, 下调抗凋亡蛋白Bcl-2和抑癌蛋白p53的表达。这些结果证明FePt NPs通过诱导细胞内氧化应激抑制神经胶质瘤U251细胞的增殖。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol. 2020;22(1):1.

    Article  Google Scholar 

  2. Yamawaki R, Nankaku M, Umaba C, Ueda M, Liang N, Mineharu Y, Yamao Y, Ikeguchi R, Matsuda S, Miyamoto S, Arakawa Y. Assessment of neurocognitive function in association with WHO grades in gliomas. Clin Neurol Neurosurg. 2021;208:106824.

    Article  Google Scholar 

  3. Ni Q, Fan YN, Zhang X, Fan HW, Li YB. In vitro and in vivo study on glioma treatment enhancement by combining temozolomide with calycosin and formononetin. J Ethnopharmacol. 2019;242:111699.

    Article  CAS  Google Scholar 

  4. Stewart BW, Wild CP. World Cancer Report 2014. Lyon, France: The International Agency for Research on Cancer; 2014, 422.

  5. Paw I, Carpenter RC, Watabe K, Debinski W, Lo HW. Mechanisms regulating glioma invasion. Cancer Lett. 2015;362(1):1.

    Article  CAS  Google Scholar 

  6. Sulman EP, Ismaila N, Armstrong TS, Tsien C, Batchelor TT, Cloughesy T, Galanis E, Gilbert M, Gondi V, Lovely M. Radiation therapy for glioblastoma: American society of clinical oncology clinical practice guideline endorsement of the American society for radiation oncology guideline. J Clin Oncol. 2017;35(3):361.

    Article  CAS  Google Scholar 

  7. Yeng LC. Strategies of temozolomide in future glioblastoma treatment. Oncol Targets Ther. 2017;10:265.

    Article  Google Scholar 

  8. Nanegrungsunk D, Onchan W, Chattipakorn N, Chattipakorn SC. Current evidence of temozolomide and bevacizumab in treatment of gliomas. Neurol Res. 2015;37(2):167.

    Article  CAS  Google Scholar 

  9. Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR, Barger GR, Coons S, Ricci P, Bullard D, Brown PD, Stelzer K, Brachman D, Suh JH, Schultz CJ, Bahary JP, Fisher BJ, Kim H, Murtha AD, Bell EH, Won M, Mehta MP, Curran WJ. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med. 2016;347(14):1344.

    Article  Google Scholar 

  10. Zhao J, Yang Y, Han X, Liang C, Liu J, Song X, Ge Z, Liu Z. Redox-sensitive nanoscale coordination polymers for drug delivery and cancer theranostics. ACS Appl Mater Interfaces. 2017;9:23555.

    Article  CAS  Google Scholar 

  11. He Z, Zhang L, Zhuo C, Jin F, Wang Y. Apoptosis inhibition effect of dihydromyricetin against UVA-exposed human keratinocyte cell line. J Photochem Photobiol B: Biol. 2016;161:40.

    Article  CAS  Google Scholar 

  12. Pankhurst Q, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine: the story so far. J Phys D Appl Phys. 2016;49(50):501002.

    Article  Google Scholar 

  13. Jane T, Anish T, Yves P, William R, Tanaka C. Temozolomide in the era of precision medicine. Cancer Res. 2017;77(4):823.

    Article  Google Scholar 

  14. Taju G, Abdul Majeed S, Nambi KS, Sahul Hameed AS. In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp Biochem Physiol C Toxicol Pharmacol. 2014;161:41.

    Article  CAS  Google Scholar 

  15. Ogawa M, Takakura H. In vivo molecular imaging for biomedical analysis and therapies. Anal Sci. 2018;34(3):273.

    Article  CAS  Google Scholar 

  16. Li J, Zheng X, Pan YT, Spendelow JS, Duchesne PN, Dong S, Li Q, Chao Y, Yin Z, Bo S. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J Am Chem Soc. 2018;140(8):2926.

    Article  CAS  Google Scholar 

  17. Shi Y, Lin M, Jiang X, Liang S. Recent advances in FePt nanoparticles for biomedicine. J Nanomater. 2015;2015:467873.

    Article  Google Scholar 

  18. Kim J, Rong C, Lee Y, Liu JP, Sun S. From core/shell structured FePt/Fe3O4/MgO to ferromagnetic FePt nanoparticles. Chem Mater. 2015;20(23):7242.

    Article  Google Scholar 

  19. Zheng Y, Jiang C, Feng R, Guo M, Wang H, Bao Z, Tang Y, Quan H. FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells. Int J Nanomed. 2015;10(1):6435.

    Article  CAS  Google Scholar 

  20. Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc. 2010;132(38):13270.

    Article  CAS  Google Scholar 

  21. Gao J, Liang L, Zhang B, Kuang Y, Zhang X, Xu B. FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc. 2007;129(5):1428.

    Article  CAS  Google Scholar 

  22. Xu C, Yuan Z, Kohler N, Kim J, Chung MA, Sun S. FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc. 2009;131(42):15346.

    Article  CAS  Google Scholar 

  23. Peng S, Sun YM, Luo Y, Ma SJ, Sun WJ, Tang GL, Li SY, Zhang NN, Ren JB, Xiao Y, Liu XF, Zhang JH, Gong Y, Xie CH. MFP-FePt-GO nanocomposites promote radiosensitivity of non-small cell lung cancer via activating mitochondrial-mediated apoptosis and impairing DNA damage repair. Int J Biol Sci. 2020;16(12):2145.

    Article  CAS  Google Scholar 

  24. Zhang DS, Cui P, Dai ZC, Yang BC, Yao XX, Liu QY, Hu ZF, Zheng XW. Tumor microenvironment responsive FePt/MoS2 nanocomposites with chemotherapy and photothermal therapy for enhancing cancer immunotherapy. Nanoscale. 2020;11(42):19912.

    Article  Google Scholar 

  25. Yang BC, Liu QY, Yao XX, Zhang DS, Dai ZC, Cui P, Zhang GR, Zheng XW, Yu DX. FePt@MnO-Based nanotheranostic platform with acidity-triggered dual-ions release for enhanced MR imaging-guided ferroptosis chemodynamic therapy. ACS Appl Mater Interf. 2019;11(42):38392.

    Article  Google Scholar 

  26. Yao XX, Yang BC, Wang S, Dai ZC, Zhang DS, Zheng XW, Liu QY. A novel multifunctional FePt/BP nanoplatform for synergistic photothermal/photodynamic/chemodynamic cancer therapies and photothermally-enhanced immunotherapy. J Mater Chem B. 2020;8(35):8010.

    Article  CAS  Google Scholar 

  27. Meng YF, Zhang DS, Sun YQ, Dai ZC, Zhang TT, Yu DX, Zhang GR, Zheng XW. Core-shell FePt-cube@covalent organic polymer nanocomposites: a multifunctional nanocatalytic agent for primary and metastatic tumor treatment. J Mater Chem B. 2020;8(48):11021.

    Article  CAS  Google Scholar 

  28. Shi LN, Wang YJ, Zhang C, Zhao Y, Lu C, Yin BL, Yang Y, Gong XY, Teng LL, Liu YL, Zhang XB, Song GS. An acidity-unlocked magnetic nanoplatform enables self-boosting ROS generation through upregulation of lactate for imaging-guided highly specific chemodynamic therapy. Angew Chem Int Ed. 2021;60(17):9562.

    Article  CAS  Google Scholar 

  29. Tsai TL, Lai YH, Chen HHW, Su WC. Overcoming radiation resistance by iron-platinum metal alloy nanoparticles in human copper transport 1-overexpressing cancer cells via mitochondrial disturbance. Int J Nanomed. 2021;16:2071.

    Article  Google Scholar 

  30. Liang S, Zhou Q, Wang M, Zhu Y, Wu Q, Yang X. Water-soluble L-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int J Nanomed. 2015;10:2325.

    CAS  Google Scholar 

  31. Sun H, Chen X, Chen D, Dong M, Fu X, Li Q, Liu X, Wu Q, Qiu T, Wan T, Li S. Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma cell proliferation. Int J Nanomed. 2012;7:3295.

    CAS  Google Scholar 

  32. Peng Y, Xu D, Mao S, Zhou X. Neurotoxicity and apoptosis induced by pyrroloquinoline quinone and its ester derivative on primary cortical neurons. Neurotoxicology. 2020;78(1):47.

    Article  CAS  Google Scholar 

  33. Ma C, Zhang J, Zhang Y, Ma C, Zhang H. Phosphate imbalance conducting by BPs-based cancer-targeting phosphate anions carrier induces necrosis. Chin Chem Lett. 2021;32(4):1550.

    Article  CAS  Google Scholar 

  34. Sun N, Liang Y, Chen Y, Wang L, Li D, Liang Z, Sun L, Wang Y, Niu H. Glutamine affects T24 bladder cancer cell proliferation by activating STAT3 through ROS and glutaminolysis. Int J Mol Med. 2019;44(6):2189.

    CAS  Google Scholar 

  35. Xiong Y, Wu X, Rao L. Tetrastigma hemsleyanum (Sanyeqing) root tuber extracts induces apoptosis in human cervical carcinoma HeLa cells. J Ethnopharmacol. 2015;165(1):46.

    Article  CAS  Google Scholar 

  36. Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, Cho JW. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol. 2006;8(10):1074.

    Article  CAS  Google Scholar 

  37. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26(9):1324.

    Article  CAS  Google Scholar 

  38. Zhu Z, Fan X, Pan Y, Lu Y, Zeng W. Trehalose improves rabbit sperm quality during cryopreservation. Cryobiology. 2017;75(1):45.

    Article  CAS  Google Scholar 

  39. Chen M, Zheng J, Liu G, Xu E, Wang J, Fuqua BK, Vulpe CD, Anderson GJ, Chen H. Ceruloplasmin and hephaestin jointly protect the exocrine pancreas against oxidative damage by facilitating iron efflux. Redox Biol. 2018;17:432.

    Article  CAS  Google Scholar 

  40. Li JL, Wang JP, Chang H, Deng SM, Du JH, Wang XX, Hu HJ, Li DY, Xu XB, Guo WQ, Song YH, Guo Z, Sun MX, Wu YW, Liu SB. FEN1 inhibitor increases sensitivity of radiotherapy in cervical cancer cells. Cancer Med. 2019;8(18):7774.

    Article  CAS  Google Scholar 

  41. Tavakol S, Ashrafizadeh M, Deng S, Azarian M, Abdoli A, Motavaf M, Poormoghadam D, Khanbabaei H, Afshar EG, Mandegary A, Pardakhty A, Yap CT, Mohammadinejad R, Kumar AP. Autophagy modulators: mechanistic aspects and drug delivery systems. Biomolecules. 2019;9(10):530.

    Article  CAS  Google Scholar 

  42. Papadopoulos F, Isihou R, Alexiou GA, Tsalios T, Vartholomatos E, Markopoulos GS, Sioka C, Tsekeris P, Kyritsis AP, Galani V. Haloperidol induced cell cycle arrest and apoptosis in glioblastoma cells. Biomedicines. 2020;8(12):1.

    Article  Google Scholar 

  43. Dai J, Li Y, Long Z, Jiang R, Zhuang Z, Wang Z, Zhao Z, Lou X, Xia F, Tang BZ. Efficient near-infrared photosensitizer with aggregation-induced emission for imaging-guided photodynamic therapy in multiple xenograft tumor models. ACS Nano. 2020;14(1):854.

    Article  CAS  Google Scholar 

  44. Wang M, Zuo Y, Li X, Li Y, Thirupathi A, Yu P, Gao G, Zhou C, Chang Y, Shi Z. Effect of sevoflurane on iron homeostasis and toxicity in the brain of mice. Brain Res. 2021;1757:147328.

    Article  CAS  Google Scholar 

  45. Feluga S, Debinski W. Ephs and Ephrins in malignant gliomas. Growth Factors. 2014;32(6):190.

    Article  Google Scholar 

  46. Guo FJ, Tian JY, Jin YM, Wang L, Cui MH. Effects of cyclooxygenase-2 gene silencing on the biological behavior of SKOV3 ovarian cancer cells. Mol Med Report. 2015;11(1):59.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Opening fund of Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica (No. BCMM201806) and the Basic Research Project of Wuhan Science and Technology Bureau (No. 2014060101010041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang-Ling Wan or Qing-Zhi Wu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YM., Meng, LH., Hu, YR. et al. Suppression mechanisms on proliferation of glioma U251 cells by FePt nanoparticles through intracellular oxidative stress. Rare Met. 41, 1202–1209 (2022). https://doi.org/10.1007/s12598-021-01885-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01885-z

Navigation