Skip to main content

Advertisement

Log in

High-entropy chemistry stabilizing spinel oxide (CoNiZnXMnLi)3O4 (X = Fe, Cr) for high-performance anode of Li-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High entropy oxides (HEOs), as a new type of single-phase multielement solid solution materials, have shown many attractive features and promising application prospect in the energy storage field. Herein, six-element HEOs (CoNiZnFeMnLi)3O4 and (CoNiZnCrMnLi)3O4 with spinel structure are successfully prepared by conventional solid-phase method and present outstanding lithium storage performances due to the synergy effect of various electrochemically active elements and the entropy stabilization. By contrast, (CoNiZnFeMnLi)3O4 delivers higher initial discharge specific capacity of 1104.3 mAh·g−1, better cycle stability (84% capacity retention after 100 cycles at 100 mA·g−1) and rate performance (293 mAh·g−1 at 2000 mA·g−1) in the half-cell. Moreover, the full-cell assembled with (CoNiZnFeMnLi)3O4 and LiCoO2 provides a reversible specific capacity of 260.2 mAh·g−1 after 100 cycles at 500 mA·g−1. Ex situ X-ray diffraction reveals the electrochemical reaction mechanism of HEOs (CoNiZnFeMnLi)3O4, and the amorphous phase and the large amount of oxygen vacancies were obtained after the initial discharge process, which are responsible for the excellent cycle and rate performance. This research puts forward fresh insights for the development of advanced energy storage materials for high-performance batteries.

Graphical Abstract

摘要

作为一种新型单相多主元固溶体材料, 高熵氧化物具有诸多优异的特性, 在储能领域应用潜力巨大。此文通过传统的固相法成功制备出了两种六元尖晶石结构的高熵氧化物(CoNiZnFeMnLi)3O4和(CoNiZnCrMnLi)3O4。基于多重活性元素的协同作用以及熵稳定的机制, 所制备的材料均表现出了优异的储锂性能。相比而言, 在半电池测试中, (CoNiZnFeMnLi)3O4 的电化学性能表现更为优异, 其首次放电比容量高达1104.3 mAh·g-1, 在100 mA·g-1电流密度下经100次循环后容量保持率可达84% , 同时在2000 mA·g-1的大电流充放下, 容量仍能保持在293 mAh·g-1。此外, 我们以LiCoO2为正极, (CoNiZnFeMnLi)3O4为负极组装为全电池进行测试, 在500 mA·g-1的电流密度下经100周循环, 电池可获得260.2 mAh·g-1的可逆比容量。利用非原位XRD对(CoNiZnFeMnLi)3O4材料的电化学反应机制进行了分析, 研究发现, 在首次放电后, 材料向非晶相转变, 同时出现了大量的氧空位, 这一现象可以合理的解释其优异的循环和倍率性能。本研究为高性能电池用储能材料的开发提供了新的视角和思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sarkar A, Velasco L, Wang D, Wang Q, Talasila G, de Biasi L, Kübel C, Brezesinski T, Bhattacharya SS, Hahn H. High entropy oxides for reversible energy storage. Nat Commun. 2018;9(1):1.

    Article  Google Scholar 

  2. Praveen S, Kim HS. High—entropy alloys: potential candidates for high—temperature applications—an overview. Adv Eng Mater. 2018;20(1):1700645.

    Article  Google Scholar 

  3. Mao A, Ding P, Quan F, Zhang T, Ran X, Li Y, Jin X, Gu X. Effect of aluminum element on microstructure evolution and properties of multicomponent Al–Co–Cr–Cu–Fe–Ni nanoparticles. J Alloys Compd. 2018;735:1167.

    Article  CAS  Google Scholar 

  4. Niu C, LaRosa CR, Miao J, Mills MJ, Ghazisaeidi M. Magnetically-driven phase transformation strengthening in high entropy alloys. Nat Commun. 2018;9(1):1.

    Article  Google Scholar 

  5. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153.

    Article  CAS  Google Scholar 

  6. Bérardan D, Franger S, Meena A, Dragoe N. Room temperature lithium superionic conductivity in high entropy oxides. J Mater Chem A. 2016;4(24):9536.

    Article  Google Scholar 

  7. Qiu N, Chen H, Yang Z, Sun S, Wang Y, Cui Y. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J Alloys Compd. 2019;777:767.

    Article  CAS  Google Scholar 

  8. Lokcu E, Toparli C, Anik M. Electrochemical performance of (MgCoNiZn)1-xLixO high-entropy oxides in lithium-ion batteries. ACS Appl Mater Interf. 2020;12(21):23860.

    Article  CAS  Google Scholar 

  9. Yan J, Wang D, Zhang X, Li J, Du Q, Liu X, Zhang J, Qi X. A high-entropy perovskite titanate lithium-ion battery anode. J Mater Sci. 2020;55(16):6942.

    Article  CAS  Google Scholar 

  10. Chen H, Qiu N, Wu B, Yang Z, Sun S, Wang Y. A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries. RSC Adv. 2020;10(16):9736.

    Article  CAS  Google Scholar 

  11. Wang D, Jiang S, Duan C, Mao J, Dong Y, Dong K, Wang Z, Luo S, Liu Y, Qi X. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J Alloys Compd. 2020;844:156158.

    Article  CAS  Google Scholar 

  12. Pan Y, Yin L, Li M. Submicron-sized α-Fe2O3 single crystals as anodes for high-performance lithium-ion batteries. Ceram Int. 2019;45(9):12072.

    Article  CAS  Google Scholar 

  13. Leng J, Wang J, Peng W, Tang Z, Xu S, Liu Y, Wang J. Highly-dispersed submicrometer single-crystal nickel-rich layered cathode: spray synthesis and accelerated lithium-ion transport. Small. 2021;17(14):2006869.

    Article  CAS  Google Scholar 

  14. Zhang J, Jiang H, Zeng Y, Zhang Y, Guo H. Oxygen-defective Co3O4 for pseudo-capacitive lithium storage. J Power Sour. 2019;439:227026.

    Article  CAS  Google Scholar 

  15. Wang Z, Jiang S, Duan C, Wang D, Luo S, Liu Y. In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Met. 2020;39(12):1383.

    Article  CAS  Google Scholar 

  16. Ma L, Lyu S, Dai Y, Pei X, Mo D, Fu Y. Lithium storage properties of NiO/reduced graphene oxide composites derived from different oxidation degrees of graphite oxide. J Alloys Compd. 2019;810:151954.

    Article  CAS  Google Scholar 

  17. Zhou Y, Zhao K, Han Y, Sun Z, Zhang H, Xu L, Ma Y, Chen Y. A nitrogen-doped-carbon/ZnO modified Cu foam current collector for high-performance Li metal batteries. J Mater Chem A. 2019;7(10):5712.

    Article  CAS  Google Scholar 

  18. Gu S, Zhu A. Graphene nanosheets loaded Fe3O4 nanoparticles as a promising anode material for lithium ion batteries. J Alloys Compd. 2020;813:152160.

    Article  CAS  Google Scholar 

  19. Zhang C, Wang L, Zhao Y, Tian Y, Liang J. Self-assembly synthesis of graphene oxide double-shell hollow-spheres decorated with Mn3O4 for electrochemical supercapacitors. Carbon. 2016;107:100.

    Article  CAS  Google Scholar 

  20. Zhang J, Chu R, Chen Y, Zeng Y, Zhang Y, Guo H. Porous carbon encapsulated Mn3O4 for stable lithium storage and its ex-situ XPS study. Electrochim Acta. 2019;319:518.

    Article  CAS  Google Scholar 

  21. Skryleva E, Kubasov I, Kiryukhantsev-Korneev PV, Senatulin B, Zhukov R, Zakutailov K, Malinkovich M, Parkhomenko YN. XPS study of Li/Nb ratio in LiNbO3 crystals Effect of polarity and mechanical processing on LiNbO3 surface chemical composition. Appl Surf Sci. 2016;389:387.

    Article  CAS  Google Scholar 

  22. Dupin J, Gonbeau D, Vinatier P, Levasseur A. Systematic XPS studies of metal oxides, hydroxides and peroxides. PCCP. 2000;2(6):1319.

    Article  CAS  Google Scholar 

  23. Sarkar A, Khan GG. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale. 2019;11(8):3414.

    Article  CAS  Google Scholar 

  24. Hou C, Hou Y, Fan Y, Zhai Y, Wang Y, Sun Z, Fan R, Dang F, Wang J. Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries. J Mater Chem A. 2018;6(16):6967.

    Article  CAS  Google Scholar 

  25. Meng T, Li B, Hu L, Yang H, Fan W, Zhang S, Liu P, Li M, Gu F, Tong Y. Engineering of oxygen vacancy and electric-field effect by encapsulating lithium titanate in reduced graphene oxide for superior lithium ion storage. Small Methods. 2019;3(10):1900185.

    Article  CAS  Google Scholar 

  26. Mondal AK, Su D, Chen S, Xie X, Wang G. Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl Mater Interf. 2014;6(17):14827.

    Article  CAS  Google Scholar 

  27. Reddy M, Wen BLW, Loh KP, Chowdari B. Energy storage studies on InVO4 as high performance anode material for Li-ion batteries. ACS Appl Mater Interf. 2013;5(16):7777.

    Article  CAS  Google Scholar 

  28. Cherian CT, Zheng M, Reddy M, Chowdari B, Sow CH. Zn2SnO4 nanowires versus nanoplates: electrochemical performance and morphological evolution during Li-cycling. ACS Appl Mater Interf. 2013;5(13):6054.

    Article  CAS  Google Scholar 

  29. Cao K, Jin T, Yang L, Jiao L. Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater Chem Front. 2017;1(11):2213.

    Article  CAS  Google Scholar 

  30. Zhao Y, Wang J, Ma C, Li Y. Cr2O3 ultrasmall nanoparticles filled carbon nanocapsules deriving from Cr (VI) for enhanced lithium storage. Chem Phys Lett. 2018;704:31.

    Article  CAS  Google Scholar 

  31. Cao Z, Qin M, Jia B, Zhang L, Wan Q, Wang M, Volinsky AA, Qu X. Facile route for synthesis of mesoporous Cr2O3 sheet as anode materials for Li-ion batteries. Electrochim Acta. 2014;139:76.

    Article  CAS  Google Scholar 

  32. Zhang D, Qin M, Huang M, Wu H, Jia B, Liu Z, Liu T, Qu X, Cao P. Facile synthesis of amorphous Cr2O3/N-doped carbon nanosheets and its excellent lithium storage property. J Am Ceram Soc. 2018;101(7):3234.

    Article  CAS  Google Scholar 

  33. Anang DA, Park J-H, Bhange DS, Cho MK, Yoon WY, Chung KY, Nam K-W. O3-type layer-structured Na0.8[Ni1/5Fe1/5Co1/5Mn1/5Ti1/5]O2 as long life and high power cathode material for sodium-ion batteries. Ceram Int. 2019;45(17):23164.

    Article  CAS  Google Scholar 

  34. Huang G, Li Q, Yin D, Wang L. Hierarchical porous Te@ ZnCo2O4 nanofibers derived from Te@metal-organic frameworks for superior lithium storage capability. Adv Funct Mater. 2017;27(5):1604941.

    Article  Google Scholar 

  35. Yuan C, Wu H, Xie Y, Lou X. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed. 2014;53(6):1488.

    Article  CAS  Google Scholar 

  36. Abbas SM, Rana UA, Khan SU-D, Iqbal Z, Ahmad N. MoN-decorated nitrogen doped carbon nanotubes anode with high lithium storage performance. Electrochim Acta. 2016;190:988.

    Article  CAS  Google Scholar 

  37. Li G, Huang Z, Chen J, Yao F, Liu J, Li OL, Sun S, Shi Z. Rechargeable Zn-ion batteries with high power and energy densities: a two-electron reaction pathway in birnessite MnO2 cathode materials. J Mater Chem A. 2020;8(4):1975.

    Article  CAS  Google Scholar 

  38. Wang D, Tian K, Wang J, Wang Z, Luo S, Liu Y, Wang Q, Zhang Y, Hao A, Yi T. Sulfur-doped 3D hierarchical porous carbon network toward excellent potassium-ion storage performance. Rare Met. 2021;40(9):2464.

    Article  CAS  Google Scholar 

  39. Jiang Y, Liu J. Definitions of pseudocapacitive materials: a brief review. Energy Environ Mater. 2019;2(1):30.

    Article  Google Scholar 

  40. Shen Z, Cao L, Rahn CD, Wang C. Least squares galvanostatic intermittent titration technique (LS-GITT) for accurate solid phase diffusivity measurement. J Electrochem Soc. 2013;160(10):A1842.

    Article  CAS  Google Scholar 

  41. Wang X, Shi J, Mi L, Zhai Y, Zhang J, Feng X, Wu Z, Chen W. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 2020;39(9):1053.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51902046, 51871046, 52071073, 51771046 and 51971055), Natural Science Foundation of Hebei Province (Nos. E2019501097, E2018501091 and E2020501004), the Science and Technology Project of Hebei Province (No. 15271302D). The Fundamental Research Funds for the Central Universities (N2123032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Yuan Wang or Yan-Guo Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1825 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, KH., Duan, CQ., Ma, Q. et al. High-entropy chemistry stabilizing spinel oxide (CoNiZnXMnLi)3O4 (X = Fe, Cr) for high-performance anode of Li-ion batteries. Rare Met. 41, 1265–1275 (2022). https://doi.org/10.1007/s12598-021-01872-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01872-4

Keywords

Navigation