Skip to main content
Log in

Preparation, characterization and luminescence behavior of some samarium complexes

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The synthesis of luminescent complexes of Sm(III) with the general formula [Sm(L)3·(X)] was done in powder form. In the formula, L is 6-methyl-4-oxo-4H-1-benzopyran-3-carboxaldehyde and X represents 2H2O (C1), 1,10-phenanthroline (C2), 2,2′-bipyridine (C3); bathophenanthroline (C4) and neocuproine (C5). The complexes were characterized by using various analytical and spectroscopic tools like elemental analysis, electrospray ionization mass spectrometry (ESI–MS+), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–Vis) spectroscopy, thermo-gravimetric analysis/ differential thermal gravimetric analysis (TGA/DTG), field emission scanning electron microscopy (FESEM), powder X-ray diffraction (XRD), and photoluminescence (PL) studies. TGA/DTG showed high thermal stability of synthesized complexes. Powder XRD depicts that the average particle size lies in the nano-range. On monitoring at the excitation wavelength of 370 nm, the complexes display characteristic luminescence peaks of Sm(III) at ~ 564, ~ 600 and ~ 647 nm assigned to 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, and 4G5/2 → 6H9/2 transitions, respectively, with the most intense transition at ~ 600 (orange emission) and ~ 647 nm (bright red emission) in liquid and powder state, respectively. The investigations demonstrate that the synthesized novel complexes might be practically useful in electroluminescent devices, bio-assays, and liquid lasers due to their attractive photoluminescent properties.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Valeur B, Santos MN. A brief history of fluorescence and phosphorescence before the emergence of quantum theory. J Chem Educ. 2011;88(6):731.

    CAS  Google Scholar 

  2. Jastrzab R, Nowak M, Skrobanska M, Tolinska A, Zabiszak M, Gabryel M, Marciniak L, Kaczmarek MT. DNA as a target for lanthanide(III) complexes influence. Coord Chem Rev. 2019;382:145.

    CAS  Google Scholar 

  3. Wu J, Liu H, Yang Y, Wang H, Yang M. A β-diketone-europium(III) complex-based time gated luminescence probe for selective visualization of peroxynitrite in living cells. Opt Mater. 2018;77:170.

    CAS  Google Scholar 

  4. Zhao S, Wang G, Poelman D, Voort PVD. Luminescent lanthanide MOFs: a unique platform for chemical sensing. Materials. 2018;11(4):572.

    Google Scholar 

  5. Dandekar MP, Itankar SB, Kondawar SB, Nandanwar DV, Koinkar P. Photoluminescent electrospun europium complex Eu(TTA)3phen embedded polymer blends nanofibres. Opt Mater. 2018;85:483.

    CAS  Google Scholar 

  6. Zheng Y, Fu L, Zhou Y, Yu J, Yu Y, Wang S, Zhang H. Electroluminescence based on a β-diketonate ternary samarium complex. J Mater Chem. 2002;12(4):919.

    CAS  Google Scholar 

  7. Nandal P, Kumar R, Khatkar A, Khatkar SP, Taxak VB. Synthesis, characterization, enhanced photoluminescence, antimicrobial and antioxidant activities of novel Sm(III) complexes containing 1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone and nitrogen containing ancillary ligands. J Mater Sci Mater Electron. 2016;27(1):878.

    CAS  Google Scholar 

  8. Sosnovskikh V. Synthesis and reactions of halogen-containing chromones. Russ Chem Rev. 2003;72(6):489.

    CAS  Google Scholar 

  9. Yousuf I, Arjmand F, Tabassum S, Toupet L, Khan RA, Siddiqui MA. Mechanistic insights into a novel chromone-appended Cu(II) anticancer drug entity: in vitro binding profile with DNA/RNA substrates and cytotoxic activity against MCF-4 and HepG2 cancer cells. Dalton Trans. 2015;44(22):10330.

    CAS  Google Scholar 

  10. Shebl M, Adly OMI, Taha A, Elabd NN. Structural variety in copper(II) complexes of 3-formylchromone: synthesis, spectral, thermal, molecular modeling and biological studies. J Mol Struct. 2017;1147:438.

    CAS  Google Scholar 

  11. Adly OMI, El-Shafiy HF. New metal complexes derived from S-benzyldithiocarbazate (SBDTC) and chromone-3-carboxaldehyde: synthesis, characterization, antimicrobial, antitumor activity and DFT calculations. J Coord Chem. 2019;72(2):218.

    CAS  Google Scholar 

  12. Philip JE, Shahid M, Kurup MRP, Velayudhan MP. Metal based biologically active compounds: design, synthesis, DNA binding and antidiabetic activity of 6-methyl-3-formyl chromone derived hydrazones and their metal(II) complexes. J Photochem Photobiol B. 2017;175:178.

    CAS  Google Scholar 

  13. Tawkif HA, Ewies EF, El-Hamouly WS. Synthesis of chromones and their applications during the last ten years. IJRPC. 2014;4(4):1046.

    Google Scholar 

  14. Khan KM, Ambreen N, Mughal UR, Jalil S, Perveen S, Choudhary MI. 3-formylchromones: potential antiinflammatory agents. Eur J Med Chem. 2010;45(9):4058.

    CAS  Google Scholar 

  15. Ishar MPS, Singh G, Singh S, Sreenivasan KK, Singh G. Design, synthesis, and evaluation of novel 6-chloro-/fluorochromone derivatives as potential topoisomerase inhibitor anticancer agents. Bioorg Med Chem Lett. 2006;16(5):1366.

    CAS  Google Scholar 

  16. Pick A, Muller H, Mayer R, Haenisch B, Pajeva IK, Weigt M, Bonisch H, Muller CE, Wiese M. Structure–activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorg Med Chem. 2011;19(6):2090.

    CAS  Google Scholar 

  17. Nowakowska Z. A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem. 2007;42(2):125.

    CAS  Google Scholar 

  18. Castellani CB, Carugo O, Tomba C, Gamba AI. Fluorescent lanthanide complexes. 1. Reaction between Tb3+ and 4-oxo-4H-1-benzopyran-3-carboxaldehyde in alcoholic medium. Inorg Chem. 1988;27(22):3965.

    Google Scholar 

  19. Kalanithi M, Kodimunthiri D, Rajarajan M, Tharmaraj P. Synthesis, characterization and biological activity of some new VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based NNO Schiff base derived from 2-aminothiazole. Spectrochim Acta Part A. 2011;82(1):290.

    CAS  Google Scholar 

  20. Gusev AN, Shul’gin VF, Meshkova SB, Hasegawa M, Alexandrov GC, Eremenko IL, Linert W. Structural and photophysical studies on ternary Sm(III), Nd(III), Yb(III), Er(III) complexes containing pyridyltriazole ligands. Polyhedron. 2012;47(1):37.

    CAS  Google Scholar 

  21. Indrasenan P, Sarojini KR. Some lanthanide (III) nitrate complexes of N-(4′-benzoylidene-3′-methyl-1′-phenyl-pyrazol-5′-one)isonicotinylhydrazine. Indian J Chem. 1991;30A:382.

    CAS  Google Scholar 

  22. Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi. 1966;5(2):627.

    Google Scholar 

  23. Ren S, Jiang W, Wang Q, Li Z, Qiao Y, Che G. Synthesis, structures and properties of six lanthanide complexes based on a 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline ligand. RSC Adv. 2019;9(6):3102.

    CAS  Google Scholar 

  24. Zhang D, Chen W, Wang Y. A novel samarium complex with interesting photoluminescence and semiconductive properties. Bull Chem Soc Ethiop. 2017;31(3):435.

    CAS  Google Scholar 

  25. Tillinski R, Rumpf C, Nather C, Durichen P, Jeb I, Schunk SA, Bensch W. Synthesis, crystal structures, and optical properties of new quaternary metal chacogenides of group 5: Cs2AgVS4, K2AgVSe4, Rb2AgVSe4, Rb2AgNbSe4, and Cs2AgNbSe4. Z Anorg Allg Chem. 1998;624(8):1285.

    CAS  Google Scholar 

  26. Zhou Y, He Q, Yang Y, Zhong H, He C, Sang G, Liu W, Yang C, Bai F, Li Y. Binapthyl-containing green- and red-emitting molecules for solution-processable organic light-emitting diodes. Adv Funct Mater. 2008;18(20):3299.

    CAS  Google Scholar 

  27. Hasan N, Iftikhar K. Syntheses, crystal structure and photophysical properties of [Sm(dbm)3(impy)] and [Tb(dbm)3(impy)] and their hybrid films. New J Chem. 2019;43:4391.

    CAS  Google Scholar 

  28. Ahmed Z, Dar WA, Iftikhar K. Syntheses and spectroscopic studies of volatile low symmetry lanthanide(III) complexes with monodentate 1H-indazole and fluorinated β-diketone. J Coord Chem. 2012;65(22):3932.

    CAS  Google Scholar 

  29. Lis S. Luminescence spectroscopy of lanthanide(III) ions in solution. J Alloys Compd. 2002;341(1–2):45.

    CAS  Google Scholar 

  30. Bunzli JCG. Lanthanide Probes in Life, Chemical and Earth Sciences: Theory and Practice. Amsterdam: Elsevier; 1989. p. 432.

    Google Scholar 

  31. Teotonio EES, Felinto MCFC, Brito HF, Malta OL, Trindade AC, Najjar R, Strek W. Synthesis, crystalline structure and photoluminescence investigations of the new trivalent rare earth complexes (Sm3+, Eu3+ and Tb3+) containing 2-thiophenecarbxylate as sensitizer. Inorg Chim Acta. 2004;357(2):451.

    CAS  Google Scholar 

  32. Ahmed Z, Dar WA, Iftikhar K. Synthesis and luminescence study of a highly volatile Sm(III) complex. Inorg Chim Acta. 2012;392:446.

    CAS  Google Scholar 

  33. Bala M, Kumar S, Taxak VB, Boora P, Khatkar SP. Synthesis, photoluminescent features and intramolecular transfer mechanism of europium(III) complexes with fluorinate β-diketone ligand and auxiliary ligands. J Fluor Chem. 2015;178:6.

    CAS  Google Scholar 

  34. Dexter DL. A theory of sensitized luminescence in solids. J Chem Phys. 1953;21(5):836.

    CAS  Google Scholar 

  35. Latva M, Takalo H, Mukkala V, Matachescu C, Rodriguez-Ubis JC, Kankare J. Correlation between the lowest triplet state level of the ligand and lanthanide(III) luminescence quantum yield. J Lumin. 1997;75(2):149.

    CAS  Google Scholar 

  36. Brito HF, Malta OL, Felinto MCFC, Teotonio EES, Menezes JFS, Silva CFB, Tomiyama CS, Carvalho CAA. Luminescence investigation of the Sm(III)-β-diketonates with sulfoxides, phosphine oxides and amide ligands. J Alloys Compd. 2002;344(1–2):293.

    CAS  Google Scholar 

  37. Zhang Q, Yang X, Deng R, Zhou L, Yang Y, Li Y. Synthesis and near infrared luminescent properties of a series of lanthanide complexes with POSS modified ligands. Molecules. 2019;24(7):1253.

    Google Scholar 

  38. Bala M, Kumar S, Devi R, Taxak VB, Boora P, Khatkar SP. Synthesis, NMR, photoluminescence studies and intramolecular energy transfer process of europium(III) complexes. J Fluor Chem. 2016;188:177.

    CAS  Google Scholar 

  39. Demas JN, Crosby GA. The measurement of photoluminescence quantum yields. A review. J Phys Chem. 1971;75(8):991.

    Google Scholar 

  40. Klink SI, Hebbink GA, Grave L, Alink PGBO, Veggel FCJM. Synergistic complexation of Eu3+ by a polydentate ligand and a bidentate antenna to obtain ternary complexes with high luminescence quantum yields. J Phys Chem A. 2002;106(15):3681.

    CAS  Google Scholar 

  41. Silva FRG, Malta OL, Reinhard C, Gudel H, Piguet C, Moser JE, Bunzli JG. Visible and near-infrared luminescence of lanthanide-containing dimetallic triple-stranded helicates: energy transfer mechanisms in the SmIII and YbIII molecular edifices. J Phys Chem A. 2002;106(9):1670.

    Google Scholar 

  42. Li H, Wu J, Huang W, Zhou Y, Li H, Zheng Y, Zuo J. Synthesis and photoluminescent properties of five homodinuclear lanthanide (Ln3+ = Eu3+, Sm3+, Er3+, Yb3+, Pr3+) complexes. J Photochem Photobiol A. 2009;208(2–3):110.

    CAS  Google Scholar 

  43. Castellani CB, Carugo O. Studies on fluorescent lanthanide complexes. New complexes of lanthanide(III) with coumarinic-3-carboxylic acid. Inorg Chim Acta. 1989;159(2):175.

    Google Scholar 

  44. Ain Q, Pandey SK, Pandey OP, Sengupta SK. Synthesis, structural characterization and biological studies of neodymium(III) and samarium(III) complexes with mercaptotriazole Schiff bases. Appl Organometal Chem. 2016;30:102.

    CAS  Google Scholar 

  45. Sengar M, Narula AK. Luminescence sensitization of Eu(III) complexes with aromatic Schiff base and N,N′-donor heterocyclic ligands: synthesis, luminescent properties and energy transfer. J Fluoresc. 2019;29(1):111.

    CAS  Google Scholar 

  46. Silva IGN, Morais AF, Mustafa D. Synthesis, characterization and Judd-Ofelt analysis of Sm3+-doped anhydrous Yttrium trimesate MOFs and their Y2O3:Sm3+ low temperature calcination products. J Lumin. 2019;210:335.

    CAS  Google Scholar 

  47. Roymahapatra G, Dinda J, Mishra A, Mahapatra A, Hwang W, Mandal SM. Cytotoxic potency of self-assembled Ruthenium(II)-NHC complexes with pincer type 2,6-bis(N-methylimidazolylidene/benzimidazolylidene)pyrazine ligands. J Can Res Ther. 2015;11(1):105.

    CAS  Google Scholar 

  48. Taxak VB, Kumar R, Makrandi JK, Khatkar SP. Luminescent properties of europium and terbium complexes with 2′-hydroxy-4,6′-dimethoxyacetophenone. Displays. 2010;31(3):116.

    CAS  Google Scholar 

  49. Awate R, Mishra A, Mansuri A. Synthesis and characterization of transition metal complexes with pyrimidine based ligand derivative. In: Proceedings of international conference on recent trends in physics, Indore; 2016. 012019.

  50. Anusha A, Raj IS, Raj AG. Synthesis and characterization of bioactive transition metal complexes of Cu(II), Co(II) and Ni(II) using DFMPM and 1,4-diamino butane. Int J Res Chem Environ. 2018;8(3):9.

    CAS  Google Scholar 

  51. Lakshmanan R, Raghavan SC, Shivaprakash NC, Nair SS. Spectral characterizations and photo physical properties of one-step synthesized blue fluorescent 4′-aryl substituted 2,2′:6′,2″-terpyridine for OLEDs application. J Lumin. 2015;168:145.

    CAS  Google Scholar 

  52. Kumar V, Gohain M, Tonder JHV, Ponra S, Bezuindenhoudt BCB, Ntwaeaborwa OM, Swart HC. Synthesis of quinoline based heterocyclic compounds for blue lighting application. Opt Mater. 2015;50(Part B):275.

    CAS  Google Scholar 

  53. Bala M, Kumar S, Boora P, Taxak VB, Khatkar A, Khatkar SP. Enhanced optoelectronics properties of europium(III) complexes with β-diketone and nitrogen heterocyclic ligands. J Mater Sci Mater Electron. 2014;25(7):2850.

    CAS  Google Scholar 

  54. Yang C, Luo J, Ma J, Lu M, Liang L, Tong B. Synthesis and photoluminescent properties of four novel trinuclear europium complexes based on two tris-β-diketones ligands. Dyes Pigm. 2011;92(1):696.

    Google Scholar 

  55. Liu J, Ren N, Zhang J, Zhang C. Preparation, thermodynamic property and antimicrobial activity of some rare-earth (III) complexes with 3-bromo-5-iodobenzoic acid and 1,10-phenanthroline. Thermochim Acta. 2013;570:51.

    CAS  Google Scholar 

  56. Poonam Kumar R, Boora P, Khatkar A, Khatkar SP, Taxak VB. Synthesis, photoluminescence and biological properties of terbium(III) complexes with hydroxyketone and nitrogen containing heterocyclic ligands. Spectrochim Acta Part A. 2016;152:304.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Senior Research Fellowship from University Grants Commission (UGC), New Delhi, India (No. 19/06/2016 (i) EU-V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Langyan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A., Langyan, R. Preparation, characterization and luminescence behavior of some samarium complexes. Rare Met. 40, 2618–2626 (2021). https://doi.org/10.1007/s12598-020-01552-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01552-9

Keywords

Navigation