Skip to main content

Advertisement

Log in

Microstructure and tensile properties of A356 alloy with different Sc/Zr additions

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Addition of rare earth elements for improving the tensile properties of aluminum alloys has attracted great attention. In this study, a systematic analysis on the microstructure and tensile properties of A356–0.13Ti alloys with different contents of scandium (Sc) and scandium/zirconium (Sc/Zr) after solution and aging treatment process was carried out. The addition of Sc/Zr into A356–0.13Ti alloys can greatly refine the grain size and modify the deleterious coarse eutectic Si structure and harmful acicular iron-containing phase morphology. As a result, the maximum value of strength (298 MPa) and ductility (elongation of 8.4%) are acquired by co-addition of Sc/Zr after solution and aging treatment process, which indicates that the tensile properties of A356 alloy are greatly enhanced by the synergistic effect of co-addition of Sc/Zr.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6: a
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Edwards GA, Stiller K, Dunlop GL, Dunlop GL, Couper MJ. The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 1998;46(11):3893.

    Article  CAS  Google Scholar 

  2. Barczy P, Tranta F. Precipitation processes in an Al–Mg//2Si(Mn) alloy. Scand J Metall. 1975;4(6):284.

    CAS  Google Scholar 

  3. Vissers R, van Huis MA, Jansen J, Zandbergen HW, Marioara CD, Andersen SJ. The crystal structure of the β″ phase in Al–Mg–Si Alloys. Acta Mater. 1998;46(9):3283.

    Article  Google Scholar 

  4. Jacobs MH. The structure of the metastable precipitates formed during ageing of an Al–Mg–Si alloy. Philos Mag Ser 1. 1972;26(1):13.

    Google Scholar 

  5. Gröbner J, Mirković D, Schmid-Fetzer R. Thermodynamic aspects of grain refinement of Al–Si alloys using Ti and B. Mater Sci Eng A Struct Mater Prop Microstruct Process. 2005;395(1–2):10.

    Article  Google Scholar 

  6. Fan Z, Wang Y, Zhang Y, Qin T, Zhou XR, Thompson GE, Pennycook T, Hashimoto T. Grain refining mechanism in the Al/Al–Ti–B system. Acta Mater. 2015;84:292.

    Article  CAS  Google Scholar 

  7. Han YF, Li K, Wang J, Shu D, Sun B. Influence of high-intensity ultrasound on grain refining performance of Al–5Ti–1B master alloy on aluminum. Mater Sci Eng A. 2005;405(1–2):306.

    Article  Google Scholar 

  8. Birol Y. A novel Al–Ti–B alloy for grain refining Al–Si foundry alloys. J Alloys Compd. 2009;486(1–2):219.

    Article  CAS  Google Scholar 

  9. Ryset J, Ryum N. Scandium in aluminium alloys. Int Mater Rev. 2005;50(1):19.

    Article  Google Scholar 

  10. Xu C, Xiao WL, Zheng RX, Hanada S, Yamagata H, Ma CL. The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al–Si–Mg alloy. Mater Des. 2015;88:485.

    Article  CAS  Google Scholar 

  11. Norman AF, Prangnell PB, Mcewen RS. The solidification behaviour of dilute aluminium–scandium alloys. Acta Mater. 1998;46(16):5715.

    Article  CAS  Google Scholar 

  12. Tzeng YC, Wu CT, Bor HY, Horng JL, Tsai ML, Lee SL. Effects of scandium addition on iron-bearing phases and tensile properties of Al–7Si–0.6Mg alloys. Mater Sci Eng A. 2014;593:103.

    Article  CAS  Google Scholar 

  13. Timpel M, Wanderka N, Schlesiger R, Yamamoto T, Lazarev N, Isheim D, Schmitz G, Matsumura S, Banhart J. The role of strontium in modifying aluminium–silicon alloys. Acta Mater. 2012;60(9):3920.

    Article  CAS  Google Scholar 

  14. Lu SZ, Hellawell A. The mechanism of silicon modification in aluminum–silicon alloys: impurity induced twinning. Metall Trans A. 1987;18(10):1721.

    Article  Google Scholar 

  15. Zhang WD, Liu Y, Yang J, Dang JZ, Xu H, Du ZM. Effects of Sc content on the microstructure of As-Cast Al-7wt.% Si alloys. Mater Charact. 2012;66(Complete):104.

    Article  CAS  Google Scholar 

  16. Patakham U, Limmaneevichitr C. Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys. J Alloys Compd. 2014;616(616):198.

    Article  CAS  Google Scholar 

  17. Tolley A, Radmilovic V, Dahmen U. Segregation in Al3(Sc, Zr) precipitates in Al–Sc–Zr alloys. Scripta Mater. 2005;52(7):621.

    Article  CAS  Google Scholar 

  18. Shen XC, Zhao NQ, Li JJ, He CN, Shi CS, Liu EZ, He F, Ma LY, Li QY. Effect of Ti/Sc atom ratio on heterogeneous nuclei, microstructure and mechanical properties of A357-0.033Sr alloys. Mater Sci Eng A. 2016;671:275.

    Article  CAS  Google Scholar 

  19. Li G, Zhao N, Liu T. Effect of Sc/Zr ratio on the microstructure and mechanical properties of new type of Al–Zn–Mg–Sc–Zr alloys. Mater Sci Eng A. 2014;617:219.

    Article  CAS  Google Scholar 

  20. Shu D, Sun B, Mi J, Grant PS. A quantitative study of solute diffusion field effects on heterogeneous nucleation and the grain size of alloys. Acta Mater. 2011;59(5):2135.

    Article  CAS  Google Scholar 

  21. Muhammad A, Xu C, Wang XJ, Hanada S, Yamagata H, Hao LR, Ma CL. High strength aluminum cast alloy: a Sc modification of a standard Al–Si–Mg cast alloy. Mater Sci Eng A. 2014;604:122.

    Article  CAS  Google Scholar 

  22. Zhang M, Liu T, He CN, Ding J, Liu EZ, Shi CS, Li JJ, Zhao NQ. Evolution of microstructure and properties of Al–Zn–Mg–Cu–Sc–Zr alloy during aging treatment. J Alloys Compd. 2016;658:946.

    Article  CAS  Google Scholar 

  23. Ye YC, Li PJ, Novikov LS, Avilkina VS, He LJ. Comparison of residual microstructures associated with impact craters in Al–Sc and Al–Ti alloys. Acta Mater. 2010;58(7):2520.

    Article  CAS  Google Scholar 

  24. Saha S, Todorova TZ, Zwanziger JW. Temperature dependent lattice misfit and coherency of Al3X (X=Sc, Zr, Ti and Nb) particles in an al matrix. Acta Mater. 2015;89:109.

    Article  CAS  Google Scholar 

  25. Li C, Pan QL, Shi YJ, Wang Y, Li B. Influence of aging temperature on corrosion behavior of Al–Zn–Mg–Sc–Zr alloy. Mater Des. 2014;55:551.

    Article  CAS  Google Scholar 

  26. Joseph GL, Gopal M. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al–Zn–Mg–Cu alloys. J Alloys Compd. 2016;657(1):717.

    Google Scholar 

  27. Fuller CB, Murray JL, Seidman DN. Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: part I—chemical compositions of Al3(Sc1−xZrx) precipitates. Acta Mater. 2005;53(20):5401.

    Article  CAS  Google Scholar 

  28. Clouet E, Laé L, Épicier T, Lefebvre W, Nastar M, Deschamps A. Complex precipitation pathways in multicomponent alloys. Nat Mater. 2006;5(6):482.

    Article  CAS  Google Scholar 

  29. Forbord B, Lefebvre W, Danoix F, Hallem H, Marthinsen K. Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)-dispersoids in aluminium alloys. Scripta Mater. 2004;51(4):333.

    Article  CAS  Google Scholar 

  30. Chen R, Xu Q, Liu B. Cellular automaton simulation of three-dimensional dendrite growth in Al–7Si–Mg ternary aluminum alloys. Comput Mater Sci. 2015;105:90.

    Article  CAS  Google Scholar 

  31. Alexopoulo ND, Pantelakis SG. Quality evaluation of A357 cast aluminum alloy specimens subjected to different artificial aging treatment. Mater Des. 2004;25(5):419.

    Article  Google Scholar 

  32. Chen T, Liu Z, Liu XM, Chen ZP. Solidified microstructure of semisolid A356–Ce alloy with two-way intermittent electromagnetic stirring. Chin J Rare Met. 2018;42(1):29.

    Google Scholar 

  33. Li JL, Chang LL, Li SL, Zhu XD, An ZX. Improvement of anisotropy of as-cast Cu–Ag alloy with columnar grains by homogenization. Chin J Rare Met. 2018;42(5):457.

    Google Scholar 

  34. Liu WH, Qiu Q, Cheng YQ, Tang CP, Liu X, Tang JG. Texture evolution and mechanical properties of 6016 aluminum alloys as equal channel angular rolling at different preheat temperatures. Chin J Rare Met. 2018;42(6):586.

    Google Scholar 

  35. Cheng CX, Yang XJ, He Y, Zhu YB. Properties of A356 aluminum alloy with ce addition and its refining mechanism. Chin J Rare Met. 2018;42(11):1127.

    Google Scholar 

  36. Wei AL, Liu XH, Dong L, Liang W. Microstructure characterization in a Zn modified Al–Mg–Mn alloy. Rare Met. 2018;36(2):129.

    CAS  Google Scholar 

  37. Yan LZ, Zhang YA, Xiong BQ, Li XW, Li ZH, Liu HW, Huang SH, Zhao G. Mechanical properties, microstructure and surface quality of an Al–1.2Mg–0.6Si–0.2Cu alloy after solution heat treatment. Rare Met. 2017;36(7):550.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51422104, 51472177 and 51531004), the Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 201145) and the Program for New Century Excellent Talents in University (No. NCET-12-0408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Nian He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, SP., Shi, CS., Zhao, NQ. et al. Microstructure and tensile properties of A356 alloy with different Sc/Zr additions. Rare Met. 40, 2514–2522 (2021). https://doi.org/10.1007/s12598-020-01529-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01529-8

Keywords

Navigation