Skip to main content
Log in

Numerical simulation of preparation of ultrafine cerium oxides using jet-flow pyrolysis

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ultrafine rare-earth oxides (REOs) are widely applied in all fields of daily life, but the conventional preparation methods are limited by a long procedure, low efficiency and severe environmental pollution. Our team has independently developed a jet pyrolysis reactor for the preparation of ultrafine cerium oxides, and this process has theoretical significance and practical application values. In this study, gas–solid pyrolysis reactions inside the jet-flow pyrolysis reactor were numerically simulated. We performed a coupling computation of the combustion, phase transformation and gas–solid reaction on Fluent and user-defined functions. We characterized the flows of different phases as well as the compositions and distributive laws of the reactants/products in the reactor. The gas-phase inlet velocity and dynamic pressure/additional pressure were related by a quadratic function. The velocity at the throat inlet changed the most, and the outlet velocity was very stable. The CeO2 concentrations were obviously stratified. This study enriches theories of jet-flow pyrolysis and theoretically underlies the optimization and popularization of self-developed pyrolysis reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen WZ, Yin HR, Ma ZH, Guo HW. Research progress of SmCo5 nanoparticles and nanocomposites. Chin J Rare Met. 2018;42(1):88.

    Google Scholar 

  2. Liu JL, Zhang P, Zhang XK, Xie QQ, Pan DJ, Zhang J, Zhang M. Synthesis and microwave absorbing properties of La-doped Sr-hexaferrite nanopowders via sol–gel auto-combustion method. Rare Met. 2017;36(9):1.

    CAS  Google Scholar 

  3. Yang Q, Hu H, Wang SS. Preparation and desulfurization activity of nano-CeO2/γ-Al2O3, catalysts. Rare Met. 2018;37(7):554.

    Article  CAS  Google Scholar 

  4. Peyghambari SM, Yousefpour M. Electrodeposition of nanostructured Ti/(Ru + Ti + Ce)O2 coatings. Rare Met. 2018;37(1):13.

    Article  CAS  Google Scholar 

  5. Xiang L. Study on the Preparation of Light Rare Earth Oxide from Rare Earth Chloride Roasted Statically. Shenyang: Northeastern University; 2010. 15.

    Google Scholar 

  6. Lv C, Zhao QY, Zhang ZM, Dou ZH, Zhang TA, Zhao HL. Numerical simulation of fluid dynamics in rare earth chloride solution in jet-flow pyrolysis reactor. Trans Nonferrous Met Soc China. 2015;25(3):997.

    Article  CAS  Google Scholar 

  7. Lv C, Zhang ZM, Zhao QY, Dou ZH, Zhang TA, Zhao HL. Numerical simulation: preparation of La2O3 in a jet pyrolysis reactor. Rare Met. 2015;34(8):600.

    Article  CAS  Google Scholar 

  8. Alhaddad M, Rendek E, Corriou JP, Mauviel G. Biomass fast pyrolysis: experimental analysis and modeling approach. Energy Fuels. 2010;24(9):4689.

    Article  CAS  Google Scholar 

  9. Blasi CD, Branca C, Masotta F, Biase ED. Experimental analysis of reaction heat effects during beech wood pyrolysis. Energy Fuels. 2013;27(5):2665.

    Article  CAS  Google Scholar 

  10. Dupont C, Commandre JM, Gauthier P, Boissonnet G, Salvador S, Schweich D. Biomass pyrolysis experiments in an analytical entrained flow reactor between 1073 K and 1273 K. Fuel. 2008;87(7):1155.

    Article  CAS  Google Scholar 

  11. Suriapparao DV, Vinu R. Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution. Rare Met. 2018;39(3):465.

    Google Scholar 

  12. Babu B, Chaurasia A. Modeling for pyrolysis of solid particle: kinetics and heat transfer effects. Energy Convers Manag. 2003;44(14):2251.

    Article  CAS  Google Scholar 

  13. Bharadwaj A, Baxter LL, Robinson AL. Effects of intraparticle heat and mass transfer on biomass devolatilization: experimental results and model predictions. Energy Fuels. 2004;18(4):1021.

    Article  CAS  Google Scholar 

  14. Blondeau J, Jeanmart H. Biomass pyrolysis at high temperatures: prediction of gaseous species yields from an anisotropic particle. Biomass Bioenerg. 2012;41(41):107.

    Article  CAS  Google Scholar 

  15. Grønli MG, Melaaen MC. Mathematical model for wood pyrolysis comparison of experimental measurements with model predictions. Energy Fuels. 2000;14(4):791.

    Article  CAS  Google Scholar 

  16. Kung HC. A mathematical model of wood pyrolysis. Combust Flame. 1972;18(2):18.

    Article  Google Scholar 

  17. Krutof A, Hawboldt KA. Upgrading of biomass sourced pyrolysis oil review: focus on co-pyrolysis and vapour upgrading during pyrolysis. Biomass Conv Bioref. 2018;8(3):775.

    Article  CAS  Google Scholar 

  18. Park WC, Atreya A, Baum HR. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust Flame. 2010;157(3):481.

    Article  CAS  Google Scholar 

  19. Larfeldt J, Leckner B, Melaaen MC. Modelling and measurements of the pyrolysis of large wood particles. Fuel. 2000;79(13):1637.

    Article  CAS  Google Scholar 

  20. Sadhukhan AK, Gupta P, Saha RK. Modelling and experimental studies on pyrolysis of biomass particles. J Anal Appl Pyrol. 2008;81(2):183.

    Article  CAS  Google Scholar 

  21. Li XG, Ma BG, Wu B, Jian SW, Luo ZT. Numerical simulation and optimization of cold airflow field in sprayed calciners. J Harbin Inst Technol. 2009;41(4):226.

    CAS  Google Scholar 

  22. Zhao HL, Liu Y, Zhang TA, Gu SQ. Computational fluid dynamics (CFD) simulations on multiphase flow in mechanically agitated seed precipitation tank. JOM. 2014;66(7):1218.

    Article  CAS  Google Scholar 

  23. Zhao HL, Zhang ZM, Zhang TA, Liu Y, Gu SQ, Zhang C. Experimental and CFD studies of solid–liquid slurry tank stirred with an improved Intermig impeller. Trans Nonferrous Met Soc China. 2014;24(8):2650.

    Article  CAS  Google Scholar 

  24. Pan YY, Kong SC. Simulation of biomass particle evolution under pyrolysis conditions using lattice Boltzmann method. Combust Flame. 2017;178(1):21.

    Article  CAS  Google Scholar 

  25. He X, Chen S, Doolen GD. A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys. 1998;146(1):282.

    Article  Google Scholar 

  26. Haseli Y, Oijen JV, Goey LD. A detailed one-dimensional model of combustion of a woody biomass particle. Bioresour Technol. 2011;102(20):9772.

    Article  CAS  Google Scholar 

  27. Motasemi F, Gerber AG. Multicomponent conjugate heat and mass transfer in biomass materials during microwave pyrolysis for biofuel production. Fuel. 2018;211(1):649.

    Article  CAS  Google Scholar 

  28. Chen H, Ma J, Liu HT. Least square spectral collocation method for nonlinear heat transfer in moving porous plate with convective and radiative boundary conditions. Int J Therm Sci. 2018;132(10):335.

    Article  Google Scholar 

  29. Ma J, Sun YS, Li BW. Spectral collocation method for transient thermal analysis of coupled conductive, convective and radiative heat transfer in the moving plate with temperature dependent properties and heat generation. Int J Heat Mass Transf. 2017;114(3):469.

    Article  Google Scholar 

  30. Ma J, Sun YS, Li BW. Simulation of combined conductive, convective and radiative heat transfer in moving irregular porous fins by spectral element method. Int J Therm Sci. 2017;118(8):475.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51904069), the Natural Science Foundation of Hebei Province of China (No. E2019501085), the Colleges and Universities in Hebei Province Science and Technology Research Youth Fund (No. QN2019312), the Fundamental Research Funds for the Central Universities (No. N172303012) and the National Science and Technology Support Program (No. 2012BAE01B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-An Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, C., Zhang, TA., Dou, ZH. et al. Numerical simulation of preparation of ultrafine cerium oxides using jet-flow pyrolysis. Rare Met. 38, 1160–1168 (2019). https://doi.org/10.1007/s12598-019-01337-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01337-9

Keywords

Navigation