Skip to main content
Log in

Manufacturing and characterizing of CCTO/SEBS dielectric elastomer as capacitive strain sensors

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Calcium copper titanate (CCTO)/polystyrene–polyethylene–polybutylene–polystyrene (SEBS) dielectric elastomers were prepared via blending method. A capacitive strain sensor using CCTO/SEBS as dielectric layer and polyaniline–dodecylbenzensulfonic acid (PANI–DBSA)/SEBS as electrodes was designed and manufactured by thermoforming process. X-ray diffractometer (XRD), scanning electron microscopy (SEM) and Raman spectra analyses were carried out; no impurities were found in the composite and CCTO particles were well dispersed. The dielectric tests showed that the samples filled with 20 wt% CCTO have their permittivity improved by 70%. The capacitive strain sensors have a stabilized capacitance variety range at different strain ranges or stretch speeds, and could remain synchronized after 500-time-stretching, showing high reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amjadi M, Kyung KU, Park I, Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater. 2016;26(11):1678.

    Article  CAS  Google Scholar 

  2. Cohen DJ, Mitra D, Peterson K, Maharbiz MM. A highly elastic, capacitive strain gauge based percolating nanotube network. Nano Lett. 2012;12(4):1821.

    Article  CAS  Google Scholar 

  3. Kim SR, Kim JH, Park JW. Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks. ACS Appl Mater Inter. 2017;9(31):26407.

    Article  CAS  Google Scholar 

  4. Trung TQ, Lee NE. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater. 2016;28(22):4338.

    Article  CAS  Google Scholar 

  5. Shi G, Zhao ZH, Pai JH, Lee L, Zhang LQ, Stevenson C, Ishara K, Zhang RJ, Zhu HW, Ma J. Highly sensitive, wearable, durable strain sensors and stretchable conductors using graphene/silicon rubber composites. Adv Funct Mater. 2016;26(42):76114.

    Article  Google Scholar 

  6. Zheng YJ, Li YL, Dai K, Liu M, Zhou M, Zheng GQ, Liu CT, Shen CY. Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Composites A. 2017;101:41.

    Article  CAS  Google Scholar 

  7. Gong XX, Fei GT, Fu WB, Fang M, Gao XD, Zhong BN, Zhang LD. Flexible strain sensor with high performance based on PANI/PDMS films. Org Electron. 2017;47:51.

    Article  CAS  Google Scholar 

  8. Amjadi M, Pichitpajongkit A, Ryu S, Korea I. Piezoresistivity of Ag NWS-PDMS nanocomposite. In: 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA; 2014, 785.

  9. Kollosche M, Stoyanov H, Laflamme S, Kofod G. Strongly enhanced sensitivity in elastic capacitive strain sensors. J Mater Chem. 2011;21(23):8292.

    Article  CAS  Google Scholar 

  10. Babu S, Singh K, Govindan A. Dielctric properties of CaCu3Ti4O12–silicone resin composites. Appl Phys A. 2012;107(3):697.

    Article  CAS  Google Scholar 

  11. Goel P, Singh JP. Fabrication of silver nanorods embedded in PDMS film and its application for strain sensing. J Phys D Appl Phys. 2014;48(44):445303.

    Article  Google Scholar 

  12. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano. 2014;8(5):5154.

    Article  CAS  Google Scholar 

  13. Wang X, Pang SL, Yang JH, Yang F. Structure and properties of SEBS/PP/OMMT nanocomposites. Trans Nonferr Met Soc. 2006;16(s2):s524.

    Article  Google Scholar 

  14. Calisi N, Giuliani A, Alderighi M, Schnorr JM, Swager TM, Francesco FD, Pucci A. Factors affecting he dispersion of MWCNTs in electrically conducting SEBS nanocomposites. Eur Polym J. 2013;49(6):1471.

    Article  CAS  Google Scholar 

  15. Kim MH, Hong SM, Koo CM. Electric actuation properties of SEBS/CB and SEBS/SWCNT nanocomposite films with different conductive fillers. Macromol Res. 2012;20(1):59.

    Article  CAS  Google Scholar 

  16. Duan L, Wang GL, Zhang YY, Zhang YN, Wei YY, Wang ZF, Zhang M. High dielectric and actuated properties of silicone dielectric elastomers filled with magnesium-doped calcium copper titanate particles. Polym Compos. 2016;39(3):691.

    Article  Google Scholar 

  17. Li T, Chen J, Dai HY, Liu DW, Xiang HW, Chen ZP. Dielectric properties of CaCu3Ti4O12–silicone rubber composites. J Mater Sci Mater Electron. 2015;26(1):312.

    Article  CAS  Google Scholar 

  18. Torabi S, Cherry M, Duijnstee EA, Corre VML, Qiu L, Hummelen JC, Palasantzas G, Koster LJA. Rough electrode creates excess capacitance in thin-film capacitors. ACS Appl Mater Interfaces. 2017;9(32):27290.

    Article  CAS  Google Scholar 

  19. Stoyanov H, Kollosche M, Risse S, Wache R, Kofod G. Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv Mater. 2013;25(4):578.

    Article  CAS  Google Scholar 

  20. Pham GT, Park Y, Liang Z, Zhang C, Wang B. Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos Part B. 2008;39(1):209.

    Article  Google Scholar 

  21. Rogers J, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science. 2010;327(5973):1603.

    Article  CAS  Google Scholar 

  22. Rogers J, Huang Y. A curvy, stretchy future for electronics. Proc Natl Acad Sci USA. 2009;106(27):10875.

    Article  CAS  Google Scholar 

  23. Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater. 2011;23(5):664.

    Article  CAS  Google Scholar 

  24. Zhang Z, Liao Q, Zhang Z, Zhang G, Li P, Lu S, Liua S, Zhang Y. Highly efficient piezotronic strain sensors with symmetrical Schottky contacts on the monopolar surface of ZnO nanobelts. Nanoscale. 2015;7(5):1796.

    Article  CAS  Google Scholar 

  25. Li C, Thostenson ET, Chou T. Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol. 2008;68(6):1227.

    Article  CAS  Google Scholar 

  26. Mannsfeld S, Tee B, Stoltenberg R, Chen VC, Barman S, Muir B, Sokolov A, Reese C, Bao Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater. 2010;9(10):859.

    Article  CAS  Google Scholar 

  27. Rosset S, Shea HR. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl Phys A. 2013;110(2):281.

    Article  CAS  Google Scholar 

  28. Jinno H, Kuribara K, Kaltenbrunner M, Matsuhisa N, Someya T, Yokota T, Sekitani T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat Commun. 2015;6:7461.

    Article  Google Scholar 

  29. Choi TY, Hwang BU, Kim BY, Trung TQ, Nam YH, Kim DN, Eom K, Lee NE. Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes. ACS Appl Mater Interfaces. 2017;9(21):18022.

    Article  CAS  Google Scholar 

  30. Kim J, Kwon S, Ihm DW. Synthesis and characterization of organic soluble polyaniline prepared by one-step emulsion polymerization. Curr Appl Phys. 2007;7(2):205.

    Article  Google Scholar 

  31. Kolev N, Bontchev RP, Jacobson AJ, Popov VN, Hadjiev VG, Litvinchuk AP, Ilieve MN. Raman spectroscopy of CaCu3Ti4O12. Phys Rev B. 2002;66(13):132102.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51403181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YY., Zhang, J., Wang, GL. et al. Manufacturing and characterizing of CCTO/SEBS dielectric elastomer as capacitive strain sensors. Rare Met. 42, 2344–2349 (2023). https://doi.org/10.1007/s12598-018-1193-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1193-9

Keywords

Navigation