Skip to main content
Log in

First principles study of Fenton reaction catalyzed by FeOCl: reaction mechanism and location of active site

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Fe-based solid catalysts in promoting Fenton reaction to generate ·OH radical has drawn much attention, and interestingly, FeOCl was reported to have superior activity compared with the traditional Fe2O3 catalysts. However, the mechanism of Fenton reaction on FeOCl and the origin of high activity remain unclear. Herein, by virtue of DFT + U calculations, the H2O2 decomposition and conversion mechanism on FeOCl(100) surface were systematically investigated. It is found that on clean FeOCl(100) surface, the exposed [Fe3+–Fe3+] sites can hardly break O–O bond of H2O2 into OH groups, but instead H2O2 tends to dehydrogenate by the surface lattice O, resulting in a series of side reactions and final conversion into O2, while the left H atoms gradually saturate the surface lattice O and reduce Fe3+ into Fe2+. On fully H-covered FeOCl(100), H2O2 can efficiently dissociate at [Fe2+–Fe2+] sites into two OH, but OH binds with Fe2+ so strongly that it cannot desorb as ·OH radical as easily as that on Fe3+. Interestingly, FeOCl(100) tends to be partially protonated in the real acid solution, which, along with H2O2 dehydrogenation, results in the formation of active unit [Fe2+–Fe3+]. On [Fe2+–Fe3+] unit, H2O2 can easily break its O–O bond and OH at Fe3+ can desorb as ·OH radical, while the other OH at Fe2+ couples with the surface H into H2O and finish the catalytic cycle. By comparison, Fe2O3(012) cannot provide enough [Fe2+–Fe3+] active units due to the relative difficulty in H2O2 dehydrogenation, which accounts for its inferior catalytic efficiency for Fenton reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Martínez-Huitle CA, Brillas E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ. 2009;87(3):105.

    Article  Google Scholar 

  2. Brillas E, Sirés I, Oturan MA. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev. 2009;109(12):6570.

    Article  CAS  Google Scholar 

  3. Chen R, Pignatello JJ. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ Sci Technol. 1997;31(8):2399.

    Article  CAS  Google Scholar 

  4. Chamarro E, Marco A, Esplugas S. Use of Fenton reagent to improve organic chemical biodegradability. Water Res. 2001;35(4):1047.

    Article  CAS  Google Scholar 

  5. Wang FC, Zhao JM, Wang WK, Tong ZZ. Adsorption of Au(III) by amino-modified monodispersed PGMA microspheres and deposition of gold nanoparticles. Rare Met. 2018;37(3):196.

    Article  CAS  Google Scholar 

  6. Andreozzi R, Caprio V, Insola A, Marotta R, Sanchirico R. Advanced oxidation processes (AOP) for water purification and recovery. Catal Today. 1999;53(1):51.

    Article  CAS  Google Scholar 

  7. Pignatello JJ, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol. 2006;36(1):1.

    Article  CAS  Google Scholar 

  8. De Morais JL, Zamora PP. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates. J Hazard Mater. 2005;123(1):181.

    Article  Google Scholar 

  9. Ayoub K, van Hullebusch ED, Cassir M, Bermond A. Application of advanced oxidation processes for TNT removal: a review. J Hazard Mater. 2010;178(1):10.

    Article  CAS  Google Scholar 

  10. Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem Eng J. 2013;228(1):944.

    Article  CAS  Google Scholar 

  11. Enami S, Sakamoto Y, Colussi AJ. Fenton chemistry at aqueous interfaces. PNAS. 2014;111(2):623.

    Article  CAS  Google Scholar 

  12. Neyens E, Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater. 2003;98(1):33.

    Article  CAS  Google Scholar 

  13. Ventura A, Jacquet G, Bermond A, Camel V. Electrochemical generation of the Fenton’s reagent: application to atrazine degradation. Water Res. 2002;36(14):3517.

    Article  CAS  Google Scholar 

  14. Zepp RG, Faust BC, Hoigne J. Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ Sci Technol. 1992;26(2):313.

    Article  CAS  Google Scholar 

  15. Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett. 1995;82(6):969.

    Article  Google Scholar 

  16. Garrido-Ramírez EG, Theng BKG, Mora ML. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—a review. Appl Clay Sci. 2010;47(3):182.

    Article  Google Scholar 

  17. Wei H, Cai Q, Rahn RO. Inhibition of UV light-and Fenton reaction-induced oxidative DNA damage by the soybcan isoflavone genistein. Carcinogenesis. 1996;17(1):73.

    Article  CAS  Google Scholar 

  18. Zhou T, Li YZ, Ji J. Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system: kinetic, pathway and effect factors. Sep Purif Technol. 2008;62(3):551.

    Article  CAS  Google Scholar 

  19. Ruppert G, Bauer R, Heisler G. The photo-Fenton reaction-an effective photochemical wastewater treatment process. J Photochem Photobiol, A. 1993;73(1):75.

    Article  CAS  Google Scholar 

  20. Cohen G. Enzymatic nonenzymatic sources of oxyradicals and regulation of antioxidant defenses. Ann NY Acad Sci. 1994;738(1):8.

    Article  CAS  Google Scholar 

  21. Huang YF, Huang YH. Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV–Na2S2O8/H2O2–Fe(II, III) two-stage oxidation process. J Hazard Mater. 2009;162(2):1211.

    Article  CAS  Google Scholar 

  22. Yao YY, Wang L, Zhu S, Huang ZF, Mao YJ, Lu WY, Chen WX. Efficient removal of dyes using heterogeneous Fenton catalysts based on activated carbon fibers with enhanced activity. Chem Eng Sci. 2013;101(14):424.

    Article  CAS  Google Scholar 

  23. Zhou M, Yu Q, Lei L, Barton G. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Sep Purif Technol. 2007;57(2):380.

    Article  CAS  Google Scholar 

  24. Ai ZH, Cheng Y, Zhang LZ, Qiu JR. Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core-shell nanowires. Environ Sci Technol. 2008;42(18):6955.

    Article  CAS  Google Scholar 

  25. Huang R, Fang Z, Yan X, Cheng W. Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chem Eng J. 2012;197(14):242.

    Article  CAS  Google Scholar 

  26. Zhao YP, Hu JY, Chen HB. Elimination of estrogen and its estrogenicity by heterogeneous photo-Fenton catalyst β-FeOOH/resin. J Photochem Photobiol, A. 2010;212(2):94.

    Article  CAS  Google Scholar 

  27. Shahwan T, Abu Sirriah S, Nairat M, Boyacı E, Eroğlu AE, Scott TB, Hallam KR. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J. 2011;172(1):258.

    Article  CAS  Google Scholar 

  28. Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni MVB, Kajitvichyanukul P, Krishnan-Ayer R. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol, C. 2008;9(4):171.

    Article  CAS  Google Scholar 

  29. Yang SJ, He HP, Wu DQ, Chen D, Liang XL, Qin ZH, Fan MD, Zhu JX, Yuan P. Decolorization of methylene blue by heterogeneous Fenton reaction using Fe3−xTixO4 (0≤x≤0.78) at neutral pH values. Appl Catal B Environ. 2009;89(3):527.

    Article  CAS  Google Scholar 

  30. Zhang GK, Gao YY, Zhang YL, Guo YD. Fe2O3-pillared rectorite as an efficient and stable Fenton-like heterogeneous catalyst for photodegradation of organic contaminants. Environ Sci Technol. 2010;44(16):6384.

    Article  CAS  Google Scholar 

  31. Pouran SR, Raman AAA, Daud WMAW. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod. 2014;64(2):24.

    Article  Google Scholar 

  32. Yang XJ, Xu XM, Xu J, Han YF. Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. J Am Chem Soc. 2013;135(43):16058.

    Article  CAS  Google Scholar 

  33. Kuo WG. Decolorizing dye wastewater with Fenton’s reagent. Water Res. 1992;26(7):881.

    Article  CAS  Google Scholar 

  34. Kremer ML. Mechanism of the Fenton reaction. Evidence for a new intermediate. Phys Chem Chem Phys. 1999;1(15):3595.

    Article  CAS  Google Scholar 

  35. Aleksić M, Kušić H, Koprivanac N, Leszczynska D, Božić AL. Heterogeneous Fenton type processes for the degradation of organic dye pollutant in water—the application of zeolite assisted AOPs. Desalination. 2010;257(1):22.

    Article  Google Scholar 

  36. Costa RCC, Lelis MFF, Oliveira LCA, Fabris JD, Ardisson JD, Rios RRVA, Silva CN, Lago RM. Novel active heterogeneous Fenton system based on Fe3−xMxO4 (Fe Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. J Hazard Mater. 2006;129(1):171.

    Article  CAS  Google Scholar 

  37. Costa RC, Moura FC, Ardisson JD, Fabris JD, Lago RM. Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Appl Catal B Environ. 2008;83(1):131.

    Article  CAS  Google Scholar 

  38. Kresse G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J Phys: Condens Matter. 1994;6(40):8245.

    CAS  Google Scholar 

  39. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15.

    Article  CAS  Google Scholar 

  40. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758.

    Article  CAS  Google Scholar 

  41. Alavi A, Hu PJ, Deutsch T, Silvestrelli PL, Hutter J. CO oxidation on Pt(111): an ab initio density functional theory study. Phys Rev Lett. 1998;80(16):3650.

    Article  CAS  Google Scholar 

  42. Liu ZP, Hu P. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C–H and C–O bond breaking/making on flat, stepped, and kinked metal surfaces. J Am Chem Soc. 2003;125(7):1958.

    Article  CAS  Google Scholar 

  43. Wang HF, Kavanagh R, Guo YL, Guo Y, Lu GZ, Hu P. Structural origin: water deactivates metal oxides to CO oxidation and promotes low-temperature CO oxidation with metals. Angew Chem Int Ed. 2012;51(27):6657.

    Article  CAS  Google Scholar 

  44. Wang HF, Wang D, Liu XH, Guo YL, Lu GZ, Hu P. Unexpected C–C bond cleavage mechanism in ethylene combustion at low temperature: origin and implications. ACS Catal. 2016;6(8):5393.

    Article  CAS  Google Scholar 

  45. Wang D, Wang HF, Hu P. Identifying the distinct features of geometric structure for hole trapping to generate radicals on rutile TiO2(110) in photooxidation using density functional theory calculations with hybrid functional. Phys Chem Chem Phys. 2015;17(3):1549.

    Article  CAS  Google Scholar 

  46. Zhang JW, Peng C, Wang HF, Hu P. Identifying the role of photogenerated holes in photocatalytic methanol dissociation on Rutile TiO2(110). ACS Catal. 2017;7(4):2374.

    Article  CAS  Google Scholar 

  47. Cococcioni M, de Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys Rev B. 2005;71(3):035105.

    Article  Google Scholar 

  48. Rollmann G, Rohrbach A, Entel P, Hafner J. First-principles calculation of the structure and magnetic phases of hematite. Phys Rev B. 2004;69(16):165107.

    Article  Google Scholar 

  49. Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32(7):1456.

    Article  CAS  Google Scholar 

  50. Wasserman E, Rustad JR, Felmy AR, Hay BP, Halley JW. Ewald methods for polarizable surfaces with application to hydroxylation and hydrogen bonding on the (012) and (001) surfaces of α-Fe2O3. Surf Sci. 1997;385(2–3):217.

    Article  CAS  Google Scholar 

  51. Guo Y, Clark SJ, Robertson J. Electronic and magnetic properties of Ti2O3, Cr2O3, and Fe2O3 calculated by the screened exchange hybrid density functional. J Phys: Condens Matter. 2012;24(32):325504.

    Google Scholar 

  52. Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci. 2006;36(3):354.

    Article  Google Scholar 

  53. Mathew K, Sundararaman R, Letchworth-Weaver K, Arias TA, Hennig RG. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J Chem Phys. 2014;140(8):084106.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21622305 and 21333003), the Young Elite Scientist Sponsorship Program by China Association for Science and Technology (No. YESS20150131), “Shu Guang” Project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No. 17SG30) and the Fundamental Research Funds for the Central Universities (No. WJ1616007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, XX., Wang, HF. & Hu, PJ. First principles study of Fenton reaction catalyzed by FeOCl: reaction mechanism and location of active site. Rare Met. 38, 783–792 (2019). https://doi.org/10.1007/s12598-018-1140-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1140-9

Keywords

Navigation