Skip to main content
Log in

Chemical synthesis of SmCo5/Co magnetic nanocomposites

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A three-step chemical synthesis of SmCo5/Co nanocomposites was developed. Firstly, the Co–Sm(OH)3–Ca(OH)2 precursors were prepared by co-precipitation. Secondly, SmCo5 particles were obtained by reductive annealing of the precursors. At last, the SmCo5/Co nanocomposites were achieved by chemical deposition based on SmCo5 particles. The SmCo5/Co nanocomposites contain hard magnetic phase of SmCo5 with about 100 nm in size and soft magnetic phase of Co with about 8 nm in size, exhibiting independent two-phase structure without alloying. Compared to that of single-phase SmCo5 particles, the saturation magnetization of SmCo5/Co nanocomposites is increased by 27.5%. The synthesis provides a new route to fabricate SmCo-based nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jones N. The pull of stronger magnets. Nature. 2011;472(7):22.

    Article  Google Scholar 

  2. Yi JH. Development of samarium–cobalt rare earth permanent magnetic materials. Rare Met. 2014;33(6):633.

    Article  Google Scholar 

  3. Sedó J, Saizposeu J, Busqué F, Ruizmolina D. Catechol-based biomimetic functional materials. Adv Mater. 2013;25(5):653.

    Article  Google Scholar 

  4. Sun SH. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater. 2006;18(4):393.

    Article  Google Scholar 

  5. Rutledge RD, Morris WH, Wellons MS, Gai Z, Shen J, Bentley J, Wittig JE, Lukehart CM. Formation of FePt nanoparticles having high coercivity. J Am Chem Soc. 2006;128(44):14210.

    Article  Google Scholar 

  6. Balasubramanian B, Das B, Skomski R, Zhang WY, Sellmyer DJ. Novel nanostructured rare-earth-free magnetic materials with high energy products. Adv Mater. 2013;25(42):6090.

    Article  Google Scholar 

  7. Jiang CB, An SZ. Recent progress in high temperature permanent magnetic materials. Rare Met. 2013;32(5):431.

    Article  Google Scholar 

  8. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun SH. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729.

    Article  Google Scholar 

  9. Skomski R, Coey JMD. Solid state. Phys Rev B: Condens Matter. 1993;48(21):15812.

    Article  Google Scholar 

  10. Larson P, Mazin II, Papaconstantopoulos DA. Calculation of magnetic anisotropy energy in SmCo5. Phys Rev B Condens Mater. 2003;67(21):214405-1.

    Article  Google Scholar 

  11. Fingers RT, Rubertus CS. Application of high temperature magnetic materials. IEEE Trans Magn. 2000;36(5):3373.

    Article  Google Scholar 

  12. Uzdin VM, Vega A, Khrenov A, Keune W, Kuncser VE, Jiang JS, Bader SD. Noncollinear Fe spin structure in (Sm–Co)/Fe exchange-spring bilayers: layer resolved Fe Mössbauer spectroscopy and electronic structure calculations. Phys Rev B. 2012;85(2):0244090:1.

    Article  Google Scholar 

  13. Hong JH, Kim WS, Lee JI, Hur NH. Exchange coupled magnetic nanocomposites of Sm(Co1−xFex)5/Fe3O4 with core/shell structure. Solid State Commun. 2007;141(10):541.

    Article  Google Scholar 

  14. Frey NA, Peng S, Cheng K, Sun SH. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev. 2009;38(9):2532.

    Article  Google Scholar 

  15. Zeng H, Sun SH. Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv Funct Mater. 2008;18(3):391.

    Article  Google Scholar 

  16. Liu F, Hou YL, Gao S. Exchange-coupled nanocomposites: chemical synthesis, characterization and application. Chem Soc Rev. 2014;43(23):8098.

    Article  Google Scholar 

  17. Zeng H, Li J, Liu JP, Wang ZL, Sun SH. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature. 2002;420(6914):395.

    Article  Google Scholar 

  18. Asti G, Solzi M, Ghidini M, Neri FM. Micromagnetic analysis of exchange-coupled hard-soft planar nanocomposites. Phys Rev B. 2004;69(17):174401.

    Article  Google Scholar 

  19. Hou YL, Xu ZC, Peng S, Rong CB, Liu JP, Sun SH. A facile synthesis of SmCo5 magnets from core/shell Co/Sm2O3 nanopaticles. Adv Mater. 2007;19(20):3349.

    Article  Google Scholar 

  20. Schrefl T, Kronmuller H, Fidler J. Exchange hardening in nano-structured two phase permanent magnets. J Magn Magn Mater. 1993;127(3):L273.

    Article  Google Scholar 

  21. Chu SY, Majetich SA, Huang MQ, Fingers RT. Synthesis and magnetic behavior of SmCo5(1−x)Fex nanocomposite magnets. J Appl Phys. 2003;93(10):8146.

    Article  Google Scholar 

  22. Saravanan P, Ghosal P, Chandrasekaran V. Multiwalled carbon nanotube-coated SmCo5/Fe magnetic nanocomposites processed by magnetic field-assisted ball milling. Adv Sci Lett. 2010;3(1):87.

    Article  Google Scholar 

  23. LeBreton JM, Larde R, Chiron H, Pop V, Givord D, Isnard O, Chicinas I. A structural investigation of SmCo5/Fe nanostructured alloys obtained by high-energy ball milling and subsequent annealing. J Phys D Appl Phys. 2010;43(8):085001.

    Article  Google Scholar 

  24. Yang C, Hou YL. Advance in the chemical synthesis and magnetic properties of nanostructured rare-earth-based permanent magnets. Rare Met. 2013;32(2):105.

    Article  Google Scholar 

  25. Hou YL, Sun SH, Rong C, Liu JP. SmCo5/Fe nanocomposites synthesized from reductive annealing of oxide nanoparticles. Appl Phys Lett. 2007;91(15):3117.

    Article  Google Scholar 

  26. Chaubey GS, Poudyal N, Liu YZ, Rong CB, Liu JP. Synthesis of Sm–Co and Sm–Co/Fe nanocrystals by reductive annealing of nanoparticles. J Alloys Compd. 2011;509(5):2132.

    Article  Google Scholar 

  27. Yang C, Jia LH, Wang SG, Gao C, Shi DW, Hou YL, Gao S. Single domain SmCo5@Co exchange-coupled magnets prepared from core/shell Sm[Co(CN)6]·4H2O@GO particles: a novel chemical approach. Sci Rep. 2013;3(7):3542.

    Article  Google Scholar 

  28. Ma ZH, Zhang TL, Jiang CB. A facile synthesis of high performance SmCo5 nanoparticles. Chem Eng J. 2015;264(3):610.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51471016) and the Key Natural Science Foundation of Beijing (No. 2151002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Li Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, RB., Ma, ZH., Zhang, TL. et al. Chemical synthesis of SmCo5/Co magnetic nanocomposites. Rare Met. 38, 306–311 (2019). https://doi.org/10.1007/s12598-016-0811-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0811-7

Keywords

Navigation