Skip to main content

Advertisement

Log in

Direct synthesis and dehydrogenation properties of NaAlH4 catalyzed with ball-milled Ti–B

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ball-milled Ti–B-doped sodium aluminum hydride was directly synthesized via mechanical ball-milling of a NaH/Al mixture. The mixture was completely hydrogenated to NaAlH4 after 70 h under hydrogen pressure of 1 MPa. And higher hydrogen pressure is beneficial for the conversion from NaH/Al mixture to NaAlH4. The dehydrogenation properties of the as-synthesized Ti–B-doped sodium aluminum were systematically investigated. The result shows that ball-milled Ti–B has a remarkable catalytic effect on the enhanced dehydrogenation properties of NaAlH4. As-synthesized Ti–B-doped NaAlH4 sample releases hydrogen at the temperature of about 100 °C. Approximately 4.15 wt% H2 is released from ball-milled Ti–B-doped NaAlH4 at 233.7 °C. Even at 110 °C, it also releases about 2.83 wt% hydrogen. The apparent activation energy (E a) for the first step is estimated to be 83.97 kJ·mol−1 using Arrhenius equation. Thus, utilization of ball-milled Ti–B as catalyst would substantially enhance the practical applications of NaAlH4 for hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schalappabach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414(6861):353.

    Article  Google Scholar 

  2. Grochala W, Edwards PP. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev. 2004;104(3):1283.

    Article  Google Scholar 

  3. Li L, Xu CC, Chen CC, Wang YJ, Jiao LF, Yuan HT. Sodium alanate system for efficient hydrogen storage. Int J Hydrogen Energy. 2013;38(21):8798.

    Article  Google Scholar 

  4. Zhang YH, Chen LC, Yang T, Xu C, Ren HP, Zhao DL. The electrochemical hydrogen storage performances of Si-added La–Mg–Ni–Co-based A2B7-type electrode alloys. Rare Met. 2015;34(8):569.

    Article  Google Scholar 

  5. Thiangviriya S, Plerdsranoy P, Wiset N, Javadian P, Jensen TR, Utke R. Hydrogen sorption and reaction mechanisms of nanoconfined 2LiBH4–NaAlH4. J Alloys Compd. 2015;633(1):484.

    Article  Google Scholar 

  6. Gupta S, Hlova IZ, Kobayashi T, Denys RV, Chen F, Zavaliy IY, Pruski M, Pecharsky VK. Facile synthesis and regeneration of Mg(BH4)2 by high energy reactive ball milling of MgB2. Chem Commun. 2013;49(8):828.

    Article  Google Scholar 

  7. Luo XL, Grant DM, Walker GS. Catalytic effect of nano-sized ScH2 on the hydrogen storage of mechanically milled MgH2. J Alloys Compd. 2015;622(1):842.

    Article  Google Scholar 

  8. Bogdanović B, Felderholff M, Pommerin A, Schüth F, Spielkamp N. Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4. Adv Mater. 2006;18(9):1198.

    Article  Google Scholar 

  9. Cai WT, Wang H, Liu JW, Jiao LF, Wang YJ, Ouyang LZ, Sun T, Sun DL, Wang HH, Yao XD, Zhu M. Towards easy reversible dehydrogenation of LiBH4 by catalyzing hierarchic nanostructured CoB. Nano Energy. 2014;10(1):235.

    Article  Google Scholar 

  10. Wang Y, Xu CC, Li J, Wang YJ, Jiao LF, Yuan HT. Orthogonal test analysis of NaAlH4-TiF3 Co-catalyzed Mg(AlH4)2. Chin J Rare Met. 2014;38(1):55.

    Google Scholar 

  11. Chu HL, Qiu SJ, Zou YJ, Xiang CL, Zhang HZ, Xu F, Sun LX, Zhou HY. Improvement on hydrogen desorption performance of calcium borohydride diammoniate doped with transition metal chlorides. J Phys Chem C. 2015;119(2):913.

    Article  Google Scholar 

  12. Bogdanović B, Schwickardi M. Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd. 1997;253–254(1):1.

    Article  Google Scholar 

  13. von Colbe JMB, Felderhoff M, Bogdanović B, Schüth F, Weidenthaler C. One-step direct synthesis of a Ti-doped sodium alanate hydrogen storage material. Chem Commun. 2005;1(37):4732.

    Article  Google Scholar 

  14. Xiao XZ, Chen LX, Fan XL, Wang XH, Chen CP, Lei YQ, Wang QD. Direct synthesis of nanocrystalline NaAlH4 complex hydride for hydrogen storage. Appl Phys Lett. 2009;94(4):041907.

    Article  Google Scholar 

  15. Li WB, Li L, Ren QL, Wang YJ, Jiao LF, Yuan HT. Ni–B-doped NaAlH4 hydrogen storage materials prepared by a facile two-step synthesis method. Rare Met. 2015;34(9):679.

    Article  Google Scholar 

  16. Rafi-ud-din, Xuanhui Q, Zahid GH, Asghar Z, Shahzad M, Iqbal M, Ahmad E. Improved hydrogen storage performances of MgH2–NaAlH4 system catalyzed by TiO2 nanoparticles. J Alloys Compd. 2014;604(1):317.

  17. Nielsen TK, Polanski M, Zasada D, Javadian P, Besenbacher F, Bystrzycki J, Skibsted J, Jensen TR. Improved hydrogen storage kinetics of nanoconfined NaAlH4 catalyzed with TiCl3 nanoparticles. ACS Nano. 2011;5(5):4056.

    Article  Google Scholar 

  18. Wang T, Wang J, Ebner AD, Ritter JA. Synergistic effects of bimetallic catalysis on the cycling behavior of NaAlH4 Co-doped with Zr and Fe. J Alloys Compd. 2012;539(1):242.

    Google Scholar 

  19. Liu YF, Liang C, Zhou H, Gao MX, Pan HG, Wang QD. A novel catalyst precursor K2TiF6 with remarkable synergetic effects of K, Ti and F together on reversible hydrogen storage of NaAlH4. Chem Commun. 2011;47(6):1740.

    Article  Google Scholar 

  20. Zhang X, Liu YF, Pang YP, Gao MX, Pan HG. Significantly improved kinetics, reversibility and cycling stability for hydrogen storage in NaAlH4 with the Ti-incorporated metal organic framework MIL-125(Ti). J Mater Chem A. 2014;2(6):1847.

    Article  Google Scholar 

  21. Fan XL, Xiao XZ, Chen LX, Zhang LT, Shao J, Li SQ, Ge HW, Wang QW. Significantly improved hydrogen storage properties of NaAlH4 catalyzed with Ce-based nanoparticles. J Mater Chem A. 2013;1(34):9752.

    Article  Google Scholar 

  22. Xiao XZ, Fan XL, Yu KR, Li SQ, Chen CP, Wang QD, Chen LX. Catalytic Mechanism of new TiC-doped sodium alanate for hydrogen storage. J Phys Chem C. 2009;113(48):20745.

    Article  Google Scholar 

  23. Li L, Qiu FY, Wang YJ, Liu G, Xu YN, An CH, Wang YP, Jiao LF, Yuan HT. TiN catalyst for the reversible hydrogen storage performance of sodium alanate system. J Mater Chem. 2012;22(27):13782.

    Article  Google Scholar 

  24. Li L, Qiu FY, Wang YP, Wang YJ, Liu G, Yan C, An CH, Xu YN, Song DW, Jiao LF, Yuan HT. Crystalline TiB2: an efficient catalyst for synthesis and hydrogen desorption/absorption performances of NaAlH4 system. J Mater Chem. 2012;22(7):3127.

    Article  Google Scholar 

  25. Fan XL, Xiao XZ, Chen LX, Han LY, Li SQ, Ge HW, Wang QD. Thermodynamics, kinetics, and modeling investigation on the dehydrogenation of CeAl4-doped NaAlH4 hydrogen storage material. J Phys Chem C. 2011;115(45):22680.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 51501072 and 51471089), the Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2014CL026), the Doctoral Foundation of University of Jinan (No. XBS1448) and the Key Laboratory of Advanced Energy Materials Chemistry (No. IRT-13R30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, ZC., Wang, YJ. et al. Direct synthesis and dehydrogenation properties of NaAlH4 catalyzed with ball-milled Ti–B. Rare Met. 36, 517–522 (2017). https://doi.org/10.1007/s12598-016-0772-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0772-x

Keywords

Navigation