Skip to main content
Log in

Valence electron structure and hydrogen storage property of LaNi4Co

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In the present study, two models of atom occupation in LaNi4Co were put forward and corresponding valence electron structures (VESs) of these two models were investigated according to empirical electron theory (EET) of solids and molecules. Results demonstrate that the VES-concerned hardness factor (F H) of LaNi4Co is lower than that of LaNi5, so LaNi4Co has lower hardness, higher plasticity and improved anti-pulverization ability. In the mean time, the difference of the equilibrium hydrogen pressure between LaNi4Co and LaNi5 was analyzed in the electronic level. The analysis shows that the strength of the weakest bond net in octahedron lattice interstices of LaNi4Co is much lower than that in LaNi5; consequently, LaNi4Co’s bond net easily deforms to accommodate hydrogen so that LaNi4Co has lower equilibrium hydrogen pressure in comparison with LaNi5. The results can provide some theory guide on the design of hydrogen storage alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang HB, Wang Q, Dong C, Xu F, Sun LX, Chen CL. Microstructure and storage properties of low V-containing Ti–Cr–V hydrogen storage alloys prepared by arc melting and suction casting. Rare Met. 2013;32(4):354.

    Article  Google Scholar 

  2. Luo JJ, Wang SM, Liu J, Pan CS, Liu XP, Jiang LJ. Influence of Ti substitution for Zr on hydrogen storage property of ZrNi0.6Co0.4 alloys. Chin. J Rare Met. 2013;37(4):521.

    Google Scholar 

  3. Fu WG, Liu XP, Ye JH, Yan MY, Wang SM, Jiang LJ. Effects of doping content of potassium fluoride on hydrogen storage properties of MgH2–2LiNH2. Chin J Rare Met. 2013;37(4):526.

    Google Scholar 

  4. Willems JJG. Metal hydrides electrodes stability of LaNi5-related compounds. Philips J Res. 1984;39(1):1.

    Google Scholar 

  5. Willems JJG, Buschow KHJ. From permanent magnets to rechargeable hydride electrodes. J Less-Common Met. 1987;129(1–2):13.

    Article  Google Scholar 

  6. Sakai T, Oguro K, Miyamura H, Kuriyama N, Kato A, Ishikawa H. Some factors affecting the cycle lives of LaNi5-based alloy electrodes of hydrogen batteries. J Less-Common Met. 1990;161(2):193.

    Article  Google Scholar 

  7. Chartouni D, Meli F, Züttel A, Gross K, Schlapbach L. The influence of cobalt on the electrochemical cycling stability of LaNi5-based hydride forming alloys. J Alloy Compd. 1996;241(1):160.

    Article  Google Scholar 

  8. Tliha M, Mathlouthi H, Lamloumi J, Percheron-Guegan A. AB5-type hydrogen storage alloy used as anodic materials in Ni-MH batteries. J Alloy Compd. 2007;436(1):221.

    Article  Google Scholar 

  9. Li L, Chen RJ, Wu F, Chen S, Wang J. Theoretical analysis on electronic structure of LaNi4Co hydrogen storage alloy. Rare Metal Mat Eng. 2007;36(7):1169.

    Google Scholar 

  10. Liu Y, Wu F. Geometry and electronic structure of LaNi4M (M = Ni, Co, Fe). Chin J Mater Res. 2005;19(3):255.

    Google Scholar 

  11. Lin YF, Zhao DL, Wang XL, Zhang YH. The effects of 3d subgroup elements M-doped (M = Ti to Zn) on the electronic structure of LaNi5. Comput Mater Sci. 2008;42(1):21.

    Article  Google Scholar 

  12. Yukawa H, Takahashi Y, Morinaga M. Alloying effects on the electronic structures of LaNi5 containing hydrogen atoms. Intermetallics. 1996;4(S):215.

    Article  Google Scholar 

  13. Qian CF, Du H, Wang HX. Function of Co and Mn in the LaNi5 hydrogen storage alloy. Rare Metal Mat Eng. 1999;28(6):368.

    Google Scholar 

  14. Yu RH. Empirical electron theory of solids and molecules. Chin Sci Bull. 1978;23(4):217.

    Google Scholar 

  15. Zhang RL. Empirical Electron Theory in Solids and Molecules. Changchun: Jilin Science and Technology Press; 1993. 28.

  16. Pauling L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. New York: Cornell University Press; 1960. 400.

  17. Liu WS, Feng PZ, Wang XH, Niu JN, Shen CJ, Liu JT. Calculation and analysis of the valence electron structure of MoSi2 and (Mo0.95, Nb0.05)Si2. Mater Chem Phys. 2012;132(2):515.

    Article  Google Scholar 

  18. Jiang SY, Li SC. Effect of valence electron structure of La–Al compounds on aluminum alloy properties. Trans Mater Heat Treat. 2013;34(7):31.

    Google Scholar 

  19. Meng ZH, Fu L, Mei J, Guo YQ. Correlations between the valence electron structures, melting points and the photoelectricity properties from tetragonal chalcopyrite crystal structure CuM(M = In, Ga)X2(X = Se, S) to CuIn0.5Ga0.5Se2. Sci Sin-Phys Mech Astron. 2013;43(3):275.

    Article  Google Scholar 

  20. Li SC. AEC: a new tool for EET, TFDC and crystal formula. Mater Sci Forum. 2011;689:245.

    Article  Google Scholar 

  21. Xu WD, Zhang RL, Yü RH. Calculation of cohesive energy for transitional metal compound. Sci China Ser A. 1988;18(3):323.

    Google Scholar 

  22. Brown ID. The Chemical Bond in Inorganic Chemistry—the Bond Valence Model. Oxford: Oxford University Press; 2002. 58.

  23. Okeeffe M, Hyde BG. Stoichiometry and the structure and stability of inorganic solids. Nature. 1984;309:411.

    Article  Google Scholar 

  24. McGibbon MM, Browning ND, Chisholm MF, McGibbon AJ, Pennycook SJ, Ravikumar V, Dravid VP. Direct determination of grain boundary atomic structure in SrTiO3. Science. 1994;266(5182):102.

    Article  Google Scholar 

  25. Pannetier J, Bassas AJ, Rodriguez CJ, Caignaert V. Prediction of crystal structures from crystal chemistry rules by simulated annealing. Nature. 1990;346(6282):343.

    Article  Google Scholar 

  26. Burdett JK, Hawthorne FC. An orbital approach to the theory of bond valence. Am Miner. 1993;78(9–10):884.

    Google Scholar 

  27. Gibbs GV, Hill FC, Boisen MB, Downs RT. Power law relationships between bond length, bond strength and electron density distributions. Phys Chem Miner. 1998;25(8):585.

    Article  Google Scholar 

  28. Cheng KJ, Cheng SY. Theoretical foundations of condensed materials. Prog Nat Sci. 1996;6(1):12.

    Google Scholar 

  29. Wolverton C, Ozoliņš V. Hydrogen storage in calcium alanate: first-principles thermodynamics and crystal structures. Phys Rev B. 2007;75(6):064101.

    Article  Google Scholar 

  30. Fischer P, Furrer A, Busch G, Schlapbach L. Neutron scattering investigations of the LaNi5 hydrogen storage system. Helv Phys Acta. 1977;50:421.

    Google Scholar 

  31. Plendl JN, Gielisse PJ. Hardness of nonmetallic solids on an atomic basis. Phys Rev. 1962;125(3):828.

    Article  Google Scholar 

  32. Smith G, Goudy AJ. Thermodynamics, kinetics and modeling studies of the LaNi5−x Co x hydride system. J Alloy Compd. 2001;316(1):93.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by National Natural Science Foundations of China (Nos. 51301149 and 50371059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, SC. Valence electron structure and hydrogen storage property of LaNi4Co. Rare Met. 34, 259–266 (2015). https://doi.org/10.1007/s12598-015-0454-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0454-0

Keywords

Navigation