Skip to main content

Advertisement

Log in

Characterization of porous Ti-bioglass composite produced by mechanical milling and space holder sintering

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this study, porous titanium-10 wt% bioglass (BG) composites were fabricated by the process of combining mechanical alloying with space holder sintering. The pore morphology and phase constituents of the milled powders and porous compacts were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FT-IR). The mechanical properties were determined by running compression test. The porosity of the sintered samples shows a downward trend with the increase of milling time. As the porosity increases, both the compressive strength and elastic modulus decrease. The results illustrate that the fabricated porous compacts with high porosity and suitable mechanical properties have the potential application in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11):3888.

    Article  Google Scholar 

  2. Liu R, Hui SX, Ye WJ, Li CL, Fu YY, Yu Y. Dynamic stress-strain properties of Ti–Al–V titanium alloys with various element contents. Rare Met. 2013;32(6):555.

    Article  Google Scholar 

  3. Ma W, Chen B, Liu FS, Xu Q. Phase transformation behaviors and mechanical properties of Ti50Ni49Fe1 alloy with severe plastic deformation. Rare Met. 2013;32(5):448.

    Article  Google Scholar 

  4. Dong BH, Wu F, Alajmi Z, Zhang C, Fu T, Ge Y. Sol-gel derived Ta-containing TiO2 films on surface roughened NiTi alloy. Rare Met. 2014;33(1):21.

    Article  Google Scholar 

  5. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog Mater Sci. 2009;54(3):397.

    Article  Google Scholar 

  6. Wang YQ, Tao J, Zhang JL, Wang T. Effects of addition of NH4HCO3 on pore characteristics and compressive properties of porous Ti-10 % Mg composites. Trans Nonferr Met Soc China. 2011;21(5):1074.

    Article  Google Scholar 

  7. Jurczyk M, Jurczyk K, Niespodziana K, Miklaszewski A. Hybrid Ti-ceramic bionanomaterials for dental engineering. Eur Cells Mater. 2010;19(S):1.

    Google Scholar 

  8. Jurczyk MU, Jurczyk K, Niespodziana K, Miklaszewski A, Jurczyk M. Titanium–SiO2 nanocomposites and their scaffolds for dental applications. Mater Charact. 2013;77(3):99.

    Article  Google Scholar 

  9. Ning CQ, Zhou Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. Biomaterials. 2002;23(14):2909.

    Article  Google Scholar 

  10. Jurczyk MU, Jurczyk K, Miklaszewski A, Jurczyk M. Nanostructured titanium-45S5 bioglass scaffold composites for medical applications. Mater Des. 2011;32(10):4882.

    Article  Google Scholar 

  11. Suryanarayana C. Synthesis of nanocomposites by mechanical alloying. J Alloys Compd. 2011;509(S):S229.

    Article  Google Scholar 

  12. Yadav TP, Yadav RM, Singh DP. Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol. 2012;2(3):22.

    Article  Google Scholar 

  13. Nouri A, Hodgson PD, Wen C., Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications, edited by Amitava M., Biomimetics Learning from Nature. Intech. 2010. 251.

  14. Chen YJ, Feng B, Zhu YP, Weng J, Wang JX, Lu X. Fabrication of porous titanium implants with biomechanical compatibility. Mater Lett. 2009;63(30):2659.

    Article  Google Scholar 

  15. Niu WJ, Bai CG, Qiu GB, Wang Q. Processing and properties of porous titanium using space holder technique. Mater Sci Eng A. 2009;506(1–2):148.

  16. Mansourighasri A, Muhamad N, Sulong AB. Processing titanium foams using tapioca starch as a space holder. J Mater Process Technol. 2012;212(1):83.

    Article  Google Scholar 

  17. Wen CE, Yamada Y, Hodgson PD. Fabrication of novel TiZr alloy foams for biomedical applications. Mater Sci Eng C. 2006;26(8):1439.

    Article  Google Scholar 

  18. Jurczyk K, Niespodziana K, Jurczyk MU, Jurczyk M. Synthesis and characterization of titanium-45S5 bioglass nanocomposites. Mater Des. 2011;32(5):2554.

    Article  Google Scholar 

  19. Chen YY, Wang XP, Xu LJ, Liu ZG, Kee DW. Tribological behavior study on Ti–Nb–Sn/hydroxyapatite composites in simulated body fluid solution. J Mech Behav Biomed Mater. 2012;10(1):97.

    Article  Google Scholar 

  20. Khoshakhlagh P, Moztarzadeh F, Rabiee SM, Moradi R, Heidari P, Ravarian R, Amanpour S. Bioglass/chitosan composite as a new bone substitute. Adv Bioceram Porous Ceram. 2010;31(6):39.

    Article  Google Scholar 

  21. Li YH, Chen RB, Qi GX, Wang ZT, Deng ZY. Powder sintering of porous Ti–15Mo alloy from TiH2 and Mo powders. J Alloys Compd. 2009;485(1–2):215.

    Article  Google Scholar 

  22. Williamson GK, Hall HW. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1(1):22.

    Article  Google Scholar 

  23. Fuse M, Shirakawa Y, Shimosaka A, Hidaka J. Mechanically strain-induced modification of selenium powders in the amorphization process. J Nanopart Res. 2003;5(1–2):97.

    Article  Google Scholar 

  24. Razavi M, Rahimipour MR, Mansoori R. Synthesis of TiC–Al2O3 nanocomposite powder from impure Ti chips, Al and carbon black by mechanical alloying. J Alloys Compd. 2008;450(1–2):463.

    Article  Google Scholar 

  25. Webster TJ, Ejiofor Ju. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials. 2004;25(19):4731.

    Article  Google Scholar 

  26. Smith LJ, Swaim JS, Yao C, Haberstroh KM, Nauman EA, Webster TJ. Increased osteoblast cell density on nanostructured PLGA-coated nanostructured titanium for orthopedic applications. Int J Nanomed. 2007;2(3):493.

    Google Scholar 

  27. Rabiee SM, Moztarzadeh F, Solati-Hashjin M. Synthesis and characterization of hydroxyapatite cement. J Mol Struct. 2010;969(1–3):172.

    Article  Google Scholar 

  28. Nabian N, Jahanshahi M, Rabiee SM. Synthesis of nano-bioactive glass–ceramic powders and its in vitro bioactivity study in bovine serum albumin protein. J Mol Struct. 2011;998(1–3):37.

    Article  Google Scholar 

  29. Khodsiani Z, Mansuri H, Mirian T. The effect of cryomilling on the morphology and particle size distribution of the NiCoCrAlYSi powders with and without nano-sized alumina. Powder Technol. 2013;245(4):7.

    Article  Google Scholar 

  30. Mousavi T, Karimzadeh F, Abbasi MH. Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying. Mater Sci Eng A. 2008;487(1–2):46.

    Article  Google Scholar 

  31. He J, Schoenung JM. Review nanostructured coatings. Mater Sci Eng A. 2002;336(1–2):274.

    Article  Google Scholar 

  32. Wang XP, Chen YY, Xu LJ, Xiao SL, Kong FT, Woo KD. Ti–Nb–Sn–hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering. J Mech Behav Biomed Mater. 2011;4(8):2074.

    Article  Google Scholar 

  33. German RM. Particle Packing Characteristics. Princeton: Metal Powder Industries Federation; 1998. 401.

  34. Moore JJ, Feng HJ. Combustion synthesis of advanced materials. Prog Mater Sci. 1995;39(4):243.

    Article  Google Scholar 

  35. Nouri A, Hodgson PD, Wen C. Effect of ball-milling time on the structural characteristics of biomedical porous Ti–Sn–Nb alloy. Mater Sci Eng C. 2011;31(5):921.

    Article  Google Scholar 

  36. Khayati GR, Janghorban K. An investigation on the application of process control agents in the preparation and consolidation behavior of nanocrystalline silver by mechanochemical method. J Adv Powder Technol. 2012;23(6):808.

    Article  Google Scholar 

  37. Nouri A, Hodgson PD, Wen CE. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy. Acta Biomater. 2010;6(4):1630.

    Article  Google Scholar 

  38. Sharma M, Gupta GK, Modi OP, Prasad BK, Gupta Ak. Titanium foam through powder metallurgy route using acicular urea particles as space holder. Mater Lett. 2011;65(21–22):3199.

    Article  Google Scholar 

  39. Naddaf Dezfuli S, Sadrnezhaad SK, Shokrgozar MA, Bonakdar S. Fabrication of biocompatible titanium scaffolds using space holder technique. J Mater Sci Mater Med. 2012;23(10):2483.

    Article  Google Scholar 

  40. Ghasemi A, Hosseini SR, Sadrnezhaad SK. Pore control in SMA NiTi scaffolds via space holder usage. Mater Sci Eng C. 2012;32(5):1266.

    Article  Google Scholar 

  41. Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 2011;7(1):23.

    Article  Google Scholar 

  42. Lu JX, Flautre B, Anselme P, Hardouin P, Gallur A, Descamps M, Thierry B. Role of interconnections in porous bioceramics on bone recolonization in vitro and vivo. J Mater Sci Mater Med. 1999;10(2):111.

    Article  Google Scholar 

  43. Esen Z, Bor S. Processing of titanium foams using magnesium spacer particles. Scr Mater. 2007;56(5):341.

    Article  Google Scholar 

  44. Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T. Processing of biomedical porous foam of Ti and Mg. Scr Mater. 2001;45(10):1147.

    Article  Google Scholar 

  45. Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. 2nd ed. Cambridge: Cambridge University Press; 1997. 528.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the use of the facilities at Materials and Energy Research Center, Babol Noshirvani University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rajabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riahi, S., Rajabi, M. & Rabiee, S.M. Characterization of porous Ti-bioglass composite produced by mechanical milling and space holder sintering. Rare Met. 34, 638–644 (2015). https://doi.org/10.1007/s12598-014-0414-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0414-0

Keywords

Navigation