Skip to main content
Log in

Electrocatalytic performance of Pd–Ni nanowire arrays electrode for methanol electrooxidation in alkaline media

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A successful approach to prepare the Pd–Ni nanowire arrays electrode without carbon supports was reported. The morphology and crystallinity of nanowire were characterized by transmission electron microscopy, selected-area electron diffraction (SAED), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses, respectively. The results show that the diameters of the nanowire are in the range of 65–75 nm, and the polycrystalline binary solid solution alloy is formed in the Pd–Ni nanowire. Cyclic voltammograms, chronoamperograms, and electrochemical impedance spectroscopy demonstrate that the Pd–Ni nanowire arrays electrodes show excellent electrocatalytic performance for methanol oxidation in alkaline media. The catalytic activity of Pd–Ni nanowire arrays electrode is ~1.39 times higher than that of the Pd nanowire arrays electrode and ~2.28 times higher than that of the commercial Pd/C catalyst. This is mostly owing to the transfer of electron density from Ni to Pd. These results indicate that Pd–Ni nanowire arrays electrode is very promising in an alkaline direct methanol fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dillon R, Srinivasan S, Arico A, Antonucci V. International activities in DMFC R&D: status of technologies and potential applications. J Power Sour. 2004;127(1):112.

    Article  Google Scholar 

  2. Li L, Xing YC. Pt–Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts. J Phys Chem C. 2007;111(6):2803.

    Article  Google Scholar 

  3. Bensebaa F, Farah AA, Wang D, Bock C, Du XM, Kung J, Le Page Y. Microwave synthesis of polymer-embedded Pt–Ru catalyst for direct methanol fuel cell. J Phys Chem B. 2005;109(32):15339.

    Article  Google Scholar 

  4. Varcoe JR, Slade RC, Yee ELH. An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells. Chem Commun. 2006;13:1428.

    Article  Google Scholar 

  5. Pan J, Lu SF, Li Y, Huang AB, Zhuang L, Lu JT. High-performance alkaline polymer electrolyte for fuel cell applications. Adv Funct Mater. 2010;20(2):312.

    Article  Google Scholar 

  6. Zhao YC, Zhan L, Tian JN, Nie SL, Ning Z. Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole–graphene in alkaline medium. Electrochim Acta. 2011;56(5):1967.

    Article  Google Scholar 

  7. Gao SY, Wu DS, Cao MN, Cao R. Self-assembled Pd-dicyanobiphenyl multilayer films and their application in electrocatalytic oxidation of methanol in alkaline medium. Thin Solid Films. 2012;524:173.

    Article  Google Scholar 

  8. Ha S, Larsen R, Masel RI. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells. J Power Sour. 2005;144(1):28.

    Article  Google Scholar 

  9. Wang M, Guo DJ, Li HL. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. J Solid State Chem. 2005;178(6):1996.

    Article  Google Scholar 

  10. Shen PK, Xu CW, Zeng R, Liu YL. Electro-oxidation of methanol on NiO-promoted Pt/C and Pd/C catalysts. Electrochem Solid State. 2006;9(2):A39.

    Article  Google Scholar 

  11. Kumar KS, Haridoss P, Seshadri SK. Synthesis and characterization of electrodeposited Ni–Pd alloy electrodes for methanol oxidation. Surf Coat Technol. 2008;202(9):1764.

    Article  Google Scholar 

  12. Verlato E, Cattarin S, Comisso N, Guerriero P, Musiani M, Vázquez-Gómez L. Preparation of catalytic anodes for methanol oxidation by spontaneous deposition of Pd onto porous Ni or porous Co. Electrochem Commun. 2010;12(8):1120.

    Article  Google Scholar 

  13. Li J, Ren J, Yang GW, Wang P, Li H, Sun X, Chen L, Ma JT, Li R. Simple and efficient deposition of Pd nanoparticles on Fe3O4 hollow nanospheres: a new catalytic system for methanol oxidation in alkaline media. Mater Sci Eng B. 2010;172(3):207.

    Article  Google Scholar 

  14. Singh RN, Anindita SA. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions. Carbon. 2009;47(1):271.

    Article  Google Scholar 

  15. Singh RN, Anindita SA. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: methanol electrooxidation in 1 mol·L−1 KOH. Int J Hydrogen Energy. 2009;34(4):2052.

    Article  Google Scholar 

  16. Zhu LD, Zhao TS, Xu JB, Liang ZX. Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media. J Power Sour. 2009;187(1):80.

    Article  Google Scholar 

  17. Zhu ZZ, Wang Z, Li HL. Self-assembly of palladium nanoparticles on functional multi-walled carbon nanotubes for formaldehyde oxidation. J Power Sour. 2009;186(2):339.

    Article  Google Scholar 

  18. Li YJ, Gao W, Ci LJ, Wang CM, Ajayan PM. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon. 2010;48(4):1124.

    Article  Google Scholar 

  19. Lim IS, Pan Y, Mott D, Ouyang JY, Njoki PN, Luo J, Zhou SQ, Zhong CJ. Assembly of gold nanoparticles mediated by multifunctional fullerenes. Langmuir. 2007;23(21):10715.

    Article  Google Scholar 

  20. Shingubara S, Okino O, Sayama Y, Sakaue H, Takahagi T. Ordered two-dimensional nanowire array formation using self-organized nanoholes of anodically oxidized aluminum. Jpn J Appl Phys. 1997;36:7791.

    Article  Google Scholar 

  21. Phok S, Rajaputra S, Singh VP. Copper indium diselenide nanowire arrays by electrodeposition in porous alumina templates. Nanotechnology. 2007;18(47):475601.

    Article  Google Scholar 

  22. Gao TR, Yin LF, Tian CS, Lu M, Sang H, Zhou SM. Magnetic properties of Co–Pt alloy nanowire arrays in anodic alumina templates. J Magn Magn Mater. 2006;300(2):471.

    Article  Google Scholar 

  23. Zhao YC, Yang XL, Tian JN, Wang FY, Zhan L. Methanol electro-oxidation on Ni@Pd core–shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media. Int J Hydrogen Energy. 2010;35(8):3249.

    Article  Google Scholar 

  24. Wang ZC, Ma ZM, Li HL. Functional multi-walled carbon nanotube/polysiloxane composite films as supports of PtNi alloy nanoparticles for methanol electro-oxidation. Appl Surf Sci. 2008;254(20):6521.

    Article  Google Scholar 

  25. Wang SY, Yang F, Jiang SP, Chen SL, Wang X. Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization. Electrochem Commun. 2010;12(11):1646.

    Article  Google Scholar 

  26. Wu G, Li L, Li JH, Xu BQ. Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films. J Power Sour. 2006;155(2):118.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 51164017 and 20863003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Li Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, ML. Electrocatalytic performance of Pd–Ni nanowire arrays electrode for methanol electrooxidation in alkaline media. Rare Met. 33, 65–69 (2014). https://doi.org/10.1007/s12598-013-0204-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0204-0

Keywords

Navigation