Skip to main content
Log in

Properties of oxide coating on the surface of ZrH1.8 prepared by microarc oxidation with different positive voltages

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Zirconia coatings as hydrogen permeation barriers were formed on disk-type ZrH1.8 substrate specimens in phosphate solution system by microarc oxidation technique. Influence of positive voltage on hydrogen permeation barriers on the surface of zirconium hydride was investigated as the main factor. The thickness of total oxide layer increased from 42.5 to 55.0 μm the increase of positive voltage increasing from 325 up to 425 V. The permeation reduction factor (PRF) was observed under different voltages, which increased with the increasing positive voltages. The phase structure of oxide layer was monoclinic ZrO2 and tetragonal ZrO1.88. No reduction reaction occured in the process of hydrogen escaping, and it indicates that hydrogen permeation through oxide layer is restricted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Primakov NG, Tudenko VA, Kazarnikov VV, Bespalov AG. Nonuniform swelling and hydrogen redistribution in zirconium hydride under neutron irradiation. Int J Hydrogen Energy. 1999;24(9):805.

    Article  CAS  Google Scholar 

  2. Plus MP, Shi SO, Rabier J. Experimental studies of mechanical properties of solid zirconium hydrides. J Nucl Mater. 2005;336(1):73.

    Article  Google Scholar 

  3. Konashi K, Ikeshoji T, Kawazoe Y, Matsui H. A molecular dynamics study of thermal conductivity of zirconium hydride. J Alloy Compd. 2003;356–357:279.

    Article  Google Scholar 

  4. Shoji T, Inoue A. Hydrogen absorption and desorption behavior of Zr-based amorphous alloys with a large structurally relaxed amorphous region. J Alloy Compd. 1999;292(1–2):275.

    Article  CAS  Google Scholar 

  5. Zhang HF, Yang QF, Wang ZD, Liu XZ. Study on hydrogen permeation barrier of zirconium hydride. Energy Sci Technol. 2005;39(S):83.

    Google Scholar 

  6. Yuan XZ, Xu J, Sun XK. Effects of oxide layer on hydrogen permeation behavior in low-carbon steel. Corros Sci Prot Technol. 1995;7(2):151.

    CAS  Google Scholar 

  7. Oskarsson M, Ahlberg E, Andersson U. Pre-transition oxide behavior of pre-hydride zircaloy-2. J Nucl Mater. 2001;289(3):315.

    Article  CAS  Google Scholar 

  8. Wang DH, Xia J, Zhang S. Microstructure of nano precursors of La–Mg hydrogen storage alloy synthesized by sol–gel technology at different pH values. Rare Met. 2012;31(5):466.

    Article  CAS  Google Scholar 

  9. Nishizaki T, Okui M, Kurosaki K, Uno M, Yamanaka S, Takeda K, Anada H. Electronic states of hydrogen in zirconium oxide. J Alloy Compd. 2002;330–332:307.

    Article  Google Scholar 

  10. Zhao P, Kong XG, Zou CP. Study on hydrogen barrier of Cr–C alloy fabricated by electroplating upon zirconium hydride. Nucl Power Eng. 2005;26(6):576.

    Google Scholar 

  11. Yang SX, Liu ZP, Han SM, Zhang W, Song JZ. Effects of annealing treatment on the microstructure and electrochemical properties of low-Co hydrogen storage alloys containing Cu and Fe. Rare Met. 2011;30(5):464.

    Article  CAS  Google Scholar 

  12. Chen WD, Wang LJ, Han L, Chen S. Properties of hydrogen permeation barrier on the surface of zirconium hydride. Rare Met. 2008;27(5):473.

    Article  Google Scholar 

  13. Huang Y, Dittmeyer R. Preparation and characterization of composite palladium membranes on site metal supports with a ceramic barrier against intermetallic diffusion. J Membr Sci. 2006;282(1–2):296.

    Article  CAS  Google Scholar 

  14. Chen WD, Wang JW, Wang LJ, Lu SG, Chen S. Oxidation behavior of zirconium hydride in pure oxygen at 350–600 °C. Rare Met. 2008;32(1):59.

    Google Scholar 

  15. Liu C, Liu JX, Wang Y. Preparation of indium tin oxide targets with a high density and single phase structure by normal pressure sintering process. Rare Met. 2011;30(2):126.

    Article  CAS  Google Scholar 

  16. Sluginov NP. Electric discharges in water. J Russ Phys Chem Soc. 1980;12(12):193.

    Google Scholar 

  17. Chinese Materials Research Society compiling. Materials research and new progress. Beijing: Chemical Industry Press; 1999. 584.

  18. Hou YL, Liu ZD. Research status of micro-arc oxide technique. Plat Finish. 2005;27(3):24.

    CAS  Google Scholar 

  19. Nakamichi M, Kawamura H, Teratani T. Characterization of chemical densified coating as tritium permeation barrier. J Nucl Sci Technol. 2001;38(11):1007.

    Google Scholar 

  20. Xiong BK, Yang XM, Luo FC. Zirconium and hafnium and its compounds application. Beijing: Metallurgical Industry Press; 2006. 64.

    Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National Natural Science Foundation of China (No. 51164023) and Inner Mongolia Natural Science Foundation (No. 2009BS0801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qing Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, GQ., Chen, WD., Zhong, XK. et al. Properties of oxide coating on the surface of ZrH1.8 prepared by microarc oxidation with different positive voltages. Rare Met. 32, 169–173 (2013). https://doi.org/10.1007/s12598-013-0028-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0028-y

Keywords

Navigation