Skip to main content
Log in

Tight focusing of phase modulated double ring shaped radially polarized beam with high NA lens

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Based on the vector diffraction theory, the effect of phase modulation on the intensity distribution of double ring shaped radially polarized beam(R-TEM11*) in the focal region of high NA lens is investigated theoretically. It is observed that a properly designed complex phase filter can generate a sub wavelength focal spot having FWHM of 0.3λ with an extended focal depth of 10λ. Apart from generating focal spot segment with large focal depth, it is also observed that a properly designed complex phase filter also generate optical cage, multiple focal spot segment useful for the manipulation of optical trapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.S. Youngworth, T.G. Brown, Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77–87 (2000)

    Article  ADS  Google Scholar 

  2. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, Focusing light to a tighter spot. Opt. Commun. 179, 1–7 (2000)

    Article  ADS  Google Scholar 

  3. R.D. Romea, W.D. Kimura, Modeling of inverse Cerenkov laser acceleration with axicon laser-beam focusing. Phys. Rev. D 42, 1807–1818 (1990)

    Article  ADS  Google Scholar 

  4. L. Novotny, M.R. Beversluis, K.S. Youngworth, T.G. Brown, Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68, 115433–115443 (2003)

    Article  ADS  Google Scholar 

  5. E. Yew, C. Sheppard, Second harmonic generation microscopy with tightly focused linearly and radially polarized beams. Opt. Commun. 275, 453–457 (2007)

    Article  ADS  Google Scholar 

  6. N. Hayazawa, Y.S. Saito, S. Kawata, Detection and characterizationof longitudinal field for tip-enhanced Raman spectroscopy. Appl. Phys. Lett. 85, 6239–6241 (2004)

    Article  ADS  Google Scholar 

  7. C.J.R. Sheppard, A. Choudhury, Annular pupils, radial polarization, and superresolution. Appl. Opt. 43, 4322–4327 (2004)

    Article  ADS  Google Scholar 

  8. W. Chen, Q. Zhan, Three-dimensional focus shaping with cylindrical vector beams. Opt. Commun. 265, 411–417 (2006)

    Article  ADS  Google Scholar 

  9. N. Bokor, N. Davidson, A three dimensional dark focal spot uniformly surrounded by light. Opt. Commun. 279, 229–234 (2007)

    Article  ADS  Google Scholar 

  10. T. Moser, H. Glur, V. Romano, F. Pigeon, Q. Parriaux, M.A. Ahmed et al., Polarization-selective grating mirrors used in the generation of radial polarization. Appl. Phys. B 80, 707–713 (2005)

    Article  ADS  Google Scholar 

  11. Y. Kozawa, S. Sato, Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt. Lett. 30, 3063–3065 (2005)

    Article  ADS  Google Scholar 

  12. K. Yonezawa, Y. Kozawa, S. Sato, Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd: YVO4 crystal. Opt. Lett. 31, 2151–2153 (2006)

    Article  ADS  Google Scholar 

  13. Y. Kozawa, S. Sato, Focusing property of a double-ring-shaped radiallypolarized beam. Opt. Lett. 31, 820–822 (2006)

    Article  ADS  Google Scholar 

  14. Y. Kozawa, S. Sato, Sharper focal spot formed by higher-order radially polarized laser beams. J. Opt. Soc. Am. A 24, 1793–1798 (2007)

    Article  ADS  Google Scholar 

  15. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)

    Article  ADS  Google Scholar 

  16. B.T. Unger, P.L. Marston, Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator. J. Acoust. Soc. Am. 83, 970–975 (1988)

    Article  ADS  Google Scholar 

  17. J.C. Crocker, D. Grier, Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys. Rev. Lett. 73, 352–355 (1994)

    Article  ADS  Google Scholar 

  18. W.H. Wright, G. Sonek, Y. Tadir, M.W. Berns, Laser trapping in cell biology. IEEE J. Quantum Electron. 26, 2148–2157 (1990)

    Article  ADS  Google Scholar 

  19. Y. Tadir, W.H. Wright, O. Vafa, T. Ord, R.H. Asch, M.W. Berns, Micromanipulation of sperm by a laser generated optical trap. Fertil. Steril. 52, 870–873 (1989)

    Google Scholar 

  20. H. Kawauchi, K. Yonezawa, Y. Kozawa, Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam. Opt. Lett. 32, 1839–1841 (1989)

    Article  ADS  Google Scholar 

  21. Q.W. Zhan, Trapping metallic Rayleigh particles with radial polarization. Opt. Express 12, 3377–3382 (2004)

    Article  ADS  Google Scholar 

  22. K. Huang, P. Shi, G.W. Cao, K. Li, X.B. Zhang, Y.P. Li, Vector-vortex Bessel–Gauss beams and their tightly focusing properties. Opt. Lett. 36, 888–890 (2011)

    Article  ADS  Google Scholar 

  23. H. Guo, X. Dong, X. Weng, G. Sui, N. Yang, S. Zhuang, Multifocus with small size, uniform intensity, and nearly circular symmetry. Opt. Lett. 36, 2200–2202 (2011)

    Article  ADS  Google Scholar 

  24. R.L. Eriksen, P.C. Mogensen, J. Glückstad, Multiple-beam optical tweezers generated by the generalized phase-contrast method. Opt. Lett. 27, 267–269 (2002)

    Article  ADS  Google Scholar 

  25. A. Casaburi, G. Pesce, P. Zemánek, Two- and three-beam interferometric optical tweezers. Opt. Commun. 251, 393–404 (2005)

    Article  ADS  Google Scholar 

  26. S. Yan, B. Yao, W. Zhao, M. Lei, Generation of multiple spherical spots with a radially polarized beam in a 4πfocusing system. J. Opt. Soc. Am. A 27, 2033–2037 (2010)

    Article  ADS  Google Scholar 

  27. Y. Zhang, B. Ding, T. Suyama, Trapping two types of particles using a double-ring-shaped radially polarized beam. Phys. Rev. A 81, 023831–023835 (2010)

    Article  ADS  Google Scholar 

  28. B. Richards, E. Wolf, Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. Ser. A 253, 358–379 (1959)

    Article  ADS  MATH  Google Scholar 

  29. K.B. Rajesh, N. Veerabagu Suresh, P.M. Anbarasan, K. Gokulakrishnan, G. Mahadevan, Tight focusing of double ring shaped radially polarized beam with high NA lens axicon. J. Opt. Laser Technol. 43, 1037–1040 (2011)

    Article  ADS  Google Scholar 

  30. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett. 78, 4713–4716 (1997)

    Article  ADS  Google Scholar 

  31. R. Ozeri, L. Khaykovich, N. Friedman, N. Davidson, Large-volume single-beam dark optical trap for atoms using binary phase elements. J. Opt. Soc. Am. B 17, 1113–1116 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Rajesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabakaran, K., Rajesh, K.B., Pillai, T.V.S. et al. Tight focusing of phase modulated double ring shaped radially polarized beam with high NA lens. J Opt 42, 382–387 (2013). https://doi.org/10.1007/s12596-013-0139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-013-0139-8

Keywords

Navigation