Skip to main content
Log in

Factors Affecting Distribution of Earthworms in Kashmir Valley: A Multivariate Statistical Approach

  • Research Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

Soil characteristics influence earthworm population dynamics, species distribution and community structure. According in the present study an attempt was made to determine the soil physiochemical factors influencing earthworms of Kashmir valley with a view to improve the soil productivity by enhancing earthworm diversity under different pedoecosystems. Data collection on 15 soil parameters from 20 earthworm inhabiting sites revealed significant variation within and among the sites in soil temperature (F23, 19 = 148.83, 9.71; P < 0.05), moisture (F23, 19 = 16.91, 46.20; P < 0.05), pH (F19 = 47.21; P < 0.05), electrical conductivity (F23, 19 = 11.67, 87.13; P < 0.05), sodium (F23, 19 = 2.46, 211.25; P < 0.05), potassium (F19 = 22.91; P < 0.05), calcium (F19 = 15.90; P < 0.05), magnesium (F23, 19 = 1.76, 104.51; P < 0.05), organic carbon (F23, 19 = 64.60, 222.50; P < 0.05), organic nitrogen (F23, 19 = 4.59, 3.81; P < 0.05) and phosphorous (F23, 19 = 5.11, 137.87; P < 0.05). Aporrectodea caliginosa trapezoides and A. rosea rosea exhibited wide range of distribution whereas Octolasion cyaneum, A. c. trapezoides and A. parva showed restricted distribution. Hierarchical cluster analysis grouped 20 earthworm collection sites into three clusters—earthworm absent sites, low earthworm diversity sites and moderate earthworm diversity sites. Principal component analysis assisted from the data set of 20 sites, resulting into four latent factors accounting for 77.95 % of total variance, identified the factors affecting earthworm communities are mainly related to physical habitat factor, chemical factor, soil texture factor and growth factor, each accounting for 26.41, 20.16, 18.25 and 13.13 % of total variance respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amador, J.A., and J.H. Görres. 2005. Role of the anecic earthworm Lumbricus terrestris L. in the distribution of plant residue nitrogen in a corn (Zea mays)-soil system. Applied Soil Ecology 30: 203–214.

    Article  Google Scholar 

  • Ammer, S., K. Weber, C. Abs, C. Ammer, and J. Prietzel. 2006. Factors influencing the distribution and abundance of earthworm communities in pure and converted Scots pine stands. Applied Soil Ecology 33: 10–21.

    Article  Google Scholar 

  • Anderson, J.M., and J.S.I. Ingram. 1993. Tropical soil biology and fertility: A handbook of methods, II ed. Wallingford: CAB International.

    Google Scholar 

  • Bartlett, M., I. James, J. Harris, and K. Ritz. 2008. Earthworm community structure on five English golf courses. Applied Soil Ecology 39: 336–341.

    Article  Google Scholar 

  • Blanchart, E., and J.M. Julka. 1997. Influence of forest disturbance on earthworm (Oligochaeta) communities in the western ghats (South India). Soil Biology & Biochemistry 29: 303–306.

    Article  CAS  Google Scholar 

  • Bohlen, P.J., R.W. Parmelee, D.A. McCartney, and C.A. Edwards. 1997. Earthworm effects on carbon and nitrogen dynamics of surface litter in corn agroecosystems. Ecological Applications 7: 1341–1349.

    Article  Google Scholar 

  • Bohlen, P.J., R.W. Parmelee, M.F. Allen, and Q.M. Ketterings. 1999. Differential effects of earthworms on nitrogen cycling from various nitrogen-15-labeled substrates. Soil Science Society of American Journal 63: 882–890.

    Article  CAS  Google Scholar 

  • Briones, M.J.I., R. Mascato, and S. Mato. 1992. Relationships of earthworms with environmental factors studied by means of detrended canonical correspondence analysis. Acta Oecologica 13: 617–626.

    Google Scholar 

  • Chan, K.Y., and I. Barchia. 2007. Soil compaction controls the abundance, biomass and distribution of earthworms in a single dairy farm in south-eastern Australia. Soil and Tillage Research 94: 75–82.

    Article  Google Scholar 

  • Chaudhuri, P.S., and A. Dey. 2012. Earthworm Communities in the Pineapple (Ananus comosus) and Mixed Fruit Plantations of West Tripura, India. Proceedings of Zoological Society. doi:10.1007/s12595-012-0047-y.

    Google Scholar 

  • Chaudhuri, P.S., and G. Bhattacharjee. 1999. Earthworm resources of Tripura. Proceeding of National Academy of Sciences, India 69 (B) II: 159–170.

    Google Scholar 

  • Chaudhuri, P.S., and S. Bhattacharjee. 2011. Reproductive biology of eight tropical earthworm species of rubber plantations in Tripura, India. Tropical Ecology 52(1): 49–60.

    Google Scholar 

  • Chaudhuri, P.S., and S. Nath. 2011. Community structure of earthworms under rubber plantations and mixed forests in Tripura, India. Journal of Environmental Biology 32: 537–541.

    PubMed  CAS  Google Scholar 

  • Curry, J.P. 2004. Factors affecting the abundance of earthworms in soils. In Earthworm ecology, 3rd ed, ed. C.A. Edwards, 91–113. Boca Raton: St. Lucie Press.

    Chapter  Google Scholar 

  • Decaëns, T. 2010. Macroecological patterns in soil communities. Global Ecology and Biogeography 19: 287302.

    Article  Google Scholar 

  • Decaëns, T., F. Bureau, and P. Margerie. 2003. Earthworm communities in a wet agricultural landscape of the Seine Valley (Upper Normandy, France). Pedobiologia 47: 479–489.

    Google Scholar 

  • Dlamini, T.C., and R.J. Haynes. 2004. Influence of agricultural land use on the size and composition of earthworm communities in northern KwaZulu-Natal, South Africa. Applied Soil Ecology 27: 77–88.

    Article  Google Scholar 

  • Dominguez, J., M. Aira, and M. Gomez-Brandon. 2009. The role of earthworms on the decomposition of organic matter and nutrient cycling. Ecosistemas 18(2): 20–31.

    Google Scholar 

  • Edwards, C.A. 2004. Earthworm Ecology, II ed. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Edwards, C.A., and P.J. Bohlen. 1996. Biology and ecology of earthworms. London: Chapman and Hall.

    Google Scholar 

  • Eijsackers, H. 2011. Earthworms as colonizers of natural and cultivated soil environments. Applied Soil Ecology 50: 1–13.

    Article  Google Scholar 

  • Ernst, G., A. Müller, H. Göhler, and C. Emmerling. 2008. C and N turnover of fermented residues from biogas plants in soil in the presence of three different earthworm species (Lumbricus terrestris, Aporrectodea longa, Aporrectodea caliginosa). Soil Biology & Biochemistry 40: 1413–1420.

    Article  CAS  Google Scholar 

  • Ernst, G., and C. Emmerling. 2009. Impact of five different tillage systems on soil organic carbon content and the density, biomass, and community composition of earthworms after a ten year period. European Journal of Soil Biology 45: 247–251.

    Article  CAS  Google Scholar 

  • Fox, C.A. 2003. Characterizing soil biota in Canadian agroecosystems: state of knowledge in relation to soil organic matter. Canadian Journal of Soil Sciences 83: 245–257.

    Article  CAS  Google Scholar 

  • Fragoso, C., and P. Lavelle. 1992. Earthworm communities of tropical rain forests. Soil Biology & Biochemistry 24: 1397–1408.

    Article  Google Scholar 

  • Gee, G.W., and W. Bauder. 1986. Principle of the pipette method. In Agronomy: Methods of soil analysis. Part I: Physical and mineralogical methods, ed. A. Klute, 394–396. Madison: American Society of Agronomy.

    Google Scholar 

  • Ghafoor, A., M. Hassan, and Z.H. Alvi. 2008. Biodiversity of earthworm species from various habitats of district Narowal, Pakistan. International Journal of Agricultural Biology 10: 681–684.

    Google Scholar 

  • Gupta, P.K. 1999. Soil, plant, water and fertilizer analysis. Bikaner: Agro Botanica.

    Google Scholar 

  • Haynes, R.J., C.S. Dominy, and M.H. Graham. 2003. Effect of agricultural land use on soil organic matter and the composition of earthworm communities in KwaZulu-Natal, South Africa. Agriculture Ecosystem and Environment 95: 453–464.

    Article  Google Scholar 

  • Huerta, E., J. Rodriguez-Olan, I. Evia-Castillo, E. Montejo-Meneses, M. Cruz-Mondragon, R. Garcia-Hernandez, and S. Uribe. 2007. Earthworms and soil properties in Tabasco, Mexico. European Journal of Soil Biology 43: 190–195.

    Article  Google Scholar 

  • Iordache, M., and I. Borza. 2010. Relation between chemical indices of soil and earthworm abundance under chemical fertilization. Plant and Soil Environment 56(9): 401–407.

    CAS  Google Scholar 

  • Jackson, M.L. 1973. Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd.

    Google Scholar 

  • Jongmans, A.G., M.M. Pulleman, M. Balabane, F. Oort, and J.C.Y. Marinissen. 2003. Soil structure and characteristics of organic matter in two orchards differing in earthworm activity. Applied Soil Ecology 24: 219–232.

    Article  Google Scholar 

  • Joschko, M., C.A. Fox, P. Lentzsch, J. Kiesel, W. Hierold, S. Kruck, and J. Timmer. 2006. Spatial analysis of earthworm biodiversity at the regional scale. Agriculture Ecosystem and Environment 112: 367–380.

    Article  Google Scholar 

  • Joshi, N., and S. Aga. 2009. Diversity and distribution of earthworms in a subtropical forest ecosystem in Uttarakhand, India. The Natural History Journal Chulalongkorn University 9(1): 21–25.

    Google Scholar 

  • Jouquet, P., T. Plumere, T.D. Thu, C. Rumpel, T.T. Duc, and D. Orange. 2010. The rehabilitation of tropical soils using compost and vermicompost is affected by the presence of endogeic earthworms. Applied Soil Ecology 46: 125–133.

    Article  Google Scholar 

  • Karaca, A., R. Kizilkaya, O.C. Turgay, and S.C. Cetin. 2010. Effects of earthworms on the availability and removal of heavy metals in soils. In Soil heavy metals, soil biology series 19, ed. I. Sherameti, and A. Varma, 369–388. Berlin: Springer.

    Chapter  Google Scholar 

  • Kizilkaya, R., A. Karaca, O.C. Turgay, and S.C. Cetin. 2011. Earthworm interactions with soil enzymes. In Biology of earthworms, ed. A. Karaca. Berlin: Springer.

    Google Scholar 

  • Klo, C., J. Faber, G. Heijmans, J. Bodt, and A. Hout. 2007. Influence of clay content and acidity of soil on development of the earthworm Lumbricus rubellus and its population level consequences. Biology and Fertility of Soil 43: 549–556.

    Article  Google Scholar 

  • Lattin, J., D. Carroll, and P. Green. 2003. Analyzing multivariate data. New York: Duxbury.

    Google Scholar 

  • Lavelle, P., C. Lattaud, D. Trigo, and I. Barois. 1995. Mutualism and biodiversity in soils. Plant and Soil 170: 23–33.

    Article  CAS  Google Scholar 

  • Lavelle, P., L. Brussaard, and P. Hendrix. 1999. Earthworm management in tropical agroecosystems. Wallingford: CAB International.

    Google Scholar 

  • Laverack, M.S. 1963. The physiology of earthworms. Oxford: Pergamon Press.

    Google Scholar 

  • Lee, K.E. 1985. Earthworms, their ecology and relationships with soils and land use. New York: Academic Press.

    Google Scholar 

  • Liu, C.W., K.H. Lin, and Y.M. Kuo. 2003. Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Science of the Total Environment 313: 77–89.

    Article  PubMed  CAS  Google Scholar 

  • Ll, H., X. Li, Z. Dou, J. Zhang, and C. Wang. 2012. Earthworm (Aporrectodea trapezoides)- mycorrhiza (Glomus intraradices) interaction and nitrogen and phosphorus uptake by maize. Biology and Fertility of Soils 48: 75–85.

    Article  Google Scholar 

  • Magurran, A.E. 2004. Measuring biological diversity. Oxford: Blackwell Publishing Ltd.

    Google Scholar 

  • Mainoo, N.O.K., K. Joann, J.K. Whalen, and S. Barrington. 2008. Earthworm abundance related to soil physicochemical and microbial properties in Accra, Ghana. African Journal of Agricultural Research 3(3): 186–194.

    Google Scholar 

  • Makeschin, F. 1997. Earthworms (Lumbricidae: Oligochaeta): important promoters of soil development and soil fertility. In Fauna in soil ecosystems: Recycling processes, nutrient fluxes and agricultural production, ed. G. Benckiser, 173–223. New York: Marcel Dekker.

    Google Scholar 

  • Marichal, R., A.F. Martinez, C. Praxedesc, D. Ruiz, A.F. Carvajal, J. Oszwald, M. Hurtado, G.G. Brown, M. Grimaldi, T. Desjardins, M. Sarrazin, T. Decaëns, E. Velasquez, and P. Lavelle. 2010. Invasion of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) in landscapes of the Amazonian deforestation arc. Applied Soil Ecology 46: 443–449.

    Article  Google Scholar 

  • Najar, I.A., and A.B. Khan. 2011. Earthworm communities of Kashmir Valley, India. Tropical Ecology 52(2): 151–162.

    Google Scholar 

  • Najar, I.A., and A.B. Khan. 2013a. Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida. Environmental Science and Pollution Research. doi:10.1007/s11356-013-1687-9.

    PubMed  Google Scholar 

  • Najar, I.A., and A.B. Khan. 2013b. Effect of vermicompost on growth and productivity of tomato (Lycopersicon esculentum) under field conditions. Acta Biologica Malaysiana 2(1): 12–21.

    Google Scholar 

  • Nuutinen, V., J. Pitkänen, E. Kuusela, T. Wibdom, and H. Lohilahti. 1998. Spatial variation of an earthworm community related to soil properties and yield in a grass-clover field. Applied Soil Ecology 8: 85–94.

    Article  Google Scholar 

  • Ouellet, G., D.R. Lapen, E. Topp, M. Sawada, and M. Edwards. 2008. A heuristic model to predict earthworm biomass in agroecosystems based on selected management and soil properties. Applied Soil Ecology 39: 35–45.

    Article  Google Scholar 

  • Ridvan, Kizilkaya R., A. Karaca, O.C. Turgay, and S.C. Cetin. 2011. Earthworm interactions with soil enzymes. In Biology of earthworms, ed. A. Karaca, 141–158. Berlin: Springer.

    Google Scholar 

  • Sabrina, D.T., M.M. Hanafi, N.A.A. Azwady, and T.M.M. Mahmud. 2009. Earthworm populations and cast properties in the soils of oil palm plantations. Malaysian Journal of Soil Science 13: 29–42.

    Google Scholar 

  • Salomé, C., C. Guenat, G. Bullinger-Weber, J.M. Gobata, and R.C.L. Bayon. 2011. Earthworm communities in alluvial forests: Influence of altitude, vegetation stages and soil parameters. Pedobiologia 54S: S89–S98.

    Article  Google Scholar 

  • Sanchez, E.G., B. Munoz, M.H. Garvin, J.B. Jesus, and D.J.D. Cosin. 1997. Ecological preferences of some earthworm species in southwest Spain. Soil Biology & Biochemistry 29(3/4): 316–331.

    Google Scholar 

  • Simard, R.R. 1993. Ammonium acetate extractable elements. In Soil sampling and method of analysis, ed. S. Carter, and R. Martin. Florida: Lewis Publishers.

    Google Scholar 

  • Sinha, B., T. Bhadauria, P.S. Ramakrishnan, K.G. Saxena, and R.K. Maikhuri. 2003. Impact of landscape modification on earthworm diversity and abundance in the Hariyali sacred landscape, Garhwal Himalaya. Pedobiologia 47: 357–370.

    Article  Google Scholar 

  • Smith, R.G., C.P. McSwiney, A.S. Grandy, P. Suwanwaree, R.M. Snider, and G.P. Robertson. 2008. Diversity and abundance of earthworms across an agricultural land-use intensity gradient. Soil and Tillage Research 100: 83–88.

    Article  Google Scholar 

  • Speratti, A.B., J.K. Whalen, and P. Rochette. 2007. Earthworm influence on carbon dioxide and nitrous oxide fluxes from an unfertilized corn agroecosystem. Biology and Fertility of Soils 44: 405–409.

    Article  Google Scholar 

  • Spurgeon, D.J., and S.P. Hopkin. 1999. Seasonal variation in the abundance, biomass and biodiversity of earthworms in soils contaminated with metal emissions from a primary smelting works. Journal of Applied Ecology 36: 173–183.

    Article  CAS  Google Scholar 

  • Tiunov, A.V., M. Bonkowski, J. Alphei, and S. Scheu. 2001. Microflora, Protozoa and Nematoda in Lumbricus terrestris burrow walls: a laboratory experiment. Pedobiologia 45: 46–60.

    Article  Google Scholar 

  • Verma, D., and Shweta. 2011. Earthworm resources of Western Himalayan region, India. International Journal of Soil Science 6(2): 124–133.

    Article  Google Scholar 

  • Walkley, A., and I.A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 34: 29–38.

    Article  Google Scholar 

  • Whalen, J.K. 2004. Spatial and temporal distribution of earthworm patches in corn field, hayfield and forest systems of southwestern Quebec, Canada. Applied Soil Ecology 27: 143–151.

    Article  Google Scholar 

  • Zar, J.H. 2009. Biostatistical analysis, V ed. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Zorn, M.I., C.A.M.V. Gestel, and H. Eijsackers. 2005. Species-specific earthworm population responses in relation to flooding dynamics in a Dutch floodplain soil. Pedobiologia 49: 189–198.

    Article  Google Scholar 

Download references

Acknowledgments

Authors express thanks to Dr. J. M. Julka and Dr. R. Paliwal of Zoological Survey of India, for taxonomic identification of the earthworm species and Dr. Abdul Hai, Head, Hydrobiology Research Laboratory, Kashmir for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishtiyaq Ahmed Najar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najar, I.A., Khan, A.B. Factors Affecting Distribution of Earthworms in Kashmir Valley: A Multivariate Statistical Approach. Proc Zool Soc 67, 126–135 (2014). https://doi.org/10.1007/s12595-013-0081-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-013-0081-4

Keywords

Navigation