Skip to main content
Log in

Analysis of major lipid classes and their fatty acids in a cestode parasite of domestic fowl, raillietina (Fuhrmannetta) echinobothrida

  • Research Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

Adult tape worms take up small molecules through their tegument and are therefore largely dependent on their host’s ability to break down carbohydrates, fats, and proteins. Cestodes have lost their capacity for de novo synthesis of lipids and have become entirely dependent on their host. It is reported that the cestodes are able to absorb both short and long chain fatty acids through a mixture of diffusion and mediated transport. Cestodes do not use lipids normally as energy reserve; instead these are being utilized for reproduction. In an attempt to know the lipid composition of the fowl cestode, Raillietina (Fuhrmannetta) echinobothrida, major lipid classes and their fatty acid compositions of this parasite were analyzed by TLC and GLC respectively. Fatty acid methyl esters of total lipid, neutral lipid, phospholipid, and glycolipid were prepared by transmethylation. Eighteen fatty acids were identified from the parasite. The percent content of neutral lipid (64.39), glycolipid (15.7) and phospholipid (19.91) were recorded. Palmitic (C16) and C18 (stearic) acids were the chief components among the fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Ackman, R. G. 2000. Fatty acids in fish and shellfish. In: Fatty acids in Foods and their Health Implications. Chow, C. K. (ed.) M. Dekker, New York. pp 153–172.

    Google Scholar 

  • Aisien, S. O., Ogiji, E. E. 1989. Observations on the lipids of Oochoristica agamae (Cestoda). Parasitol. Res., 75: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, J. 1981. Biochemistry of Parasitic Helminthes. Univ. Park Press, Baltimore.

    Google Scholar 

  • Barrett, J. 1983. Lipid metabolism. In: Biology of the Eucestoda, Arme, C., Pappas, P. W. (eds.) vol. 2, pp.391–419. Academic Pr., London.

    Google Scholar 

  • Berg, J. M., Tymoczko, J. L., Stryer, L., Clarke, N. D. 2002. Biochemistry. 5th Edition. Freeman and Company, New York.

    Google Scholar 

  • Bligh, E. G., Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911–917

    CAS  PubMed  Google Scholar 

  • Buteau, G. H., Simons, J. E., Beach, D. H., Holz, Jr. G. G., Sherman, I. W. 1971. The lipids of cestodes from Pacific and Atlantic Coast Triakid sharks. J. Parasit., 57: 1272–1278.

    Article  CAS  PubMed  Google Scholar 

  • Chappell, L. H. 1980. Physiology of Parasites. Blackie, Glasgow.

    Google Scholar 

  • Christie, W. W. 2003. Lipid Analysis. 3rd Edition. Oily Press, Bridgwater.

    Google Scholar 

  • Dalton, J.P., Skelly, P., Halton, D.W. 2004. Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Can. J. Zool., 82: 211–232.

    Article  Google Scholar 

  • Dey, C., Misra, K. K. 2009. Ultrastructural studies of internuncial processes in the tegument of a cyclophyllid cestode Raillietina (Fuhrmannetta) echinobothrida, a parasite of country fowl Gallus domesticus. Proc. zool. Soc., 62: 29–37.

    Article  Google Scholar 

  • Fried, B., Butler, M.S. 1977. Histochemical and thin layer chromatographic analysis of neutral lipids in metacercarial and adult Cotylurus sp. (Trematoda:Strigeidae). J. Parasit., 63:831–834.

    Article  CAS  PubMed  Google Scholar 

  • Furlong, S. T., Thibault, K. S., Morbelli, L. M., Quinn, J. J., Rogers, R. A. 1995. Uptake and compartmentalization of fluorescent lipid analogs in larval Schistosoma mansoni. J. Lipid Res., 36: 1–12.

    CAS  PubMed  Google Scholar 

  • Ghosh, D. 2009. Competition for lipid and fatty acid uptake by a trematode parasite Paramphistomum cervi and its host, the Indian goat Capra hircus. Ph. D. Thesis, University of Calcutta, Calcutta.

    Google Scholar 

  • Ghosh, A., Kar, K., Ghosh, D., Dey, C., Misra, K. K. 2009. Major lipid classes and their fatty acids in a parasitic nematode, Ascaridia galli. J. Parasit. Dis., (Submitted for publication).

  • Jacobsen, N. S., Fairbairn, D. 1967. Lipid metabolism in helminth parasites. III. Biosynthesis and interconversion of fatty acids by Hymenolepis diminuta (Cestoda). J. Parasit., 53: 355–361.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, F., Kimura, S., Mueller, J. F. 1966. Lipid metabolism in the larval and adult forms of the tapeworm Spirometra mansonoides. J. Biol. Chem., 241: 4224–4232.

    CAS  PubMed  Google Scholar 

  • Mills, G. L., Taylor, D. C., Williams, J. F. 1981. Lipid composition of metacestodes of Taenia taeniaeformis and lipid changes during growth. Mol. Biochem. Parasitol., 3: 301–318.

    Article  CAS  PubMed  Google Scholar 

  • Moczoñ, T. 2006. Accumulation and utilization of lipids during the development of Hymenolepis diminuta cysticercoids. Acta Parasitol., 51: 152–155.

    Article  Google Scholar 

  • Rouser, G., Kritchevsky, G., Yamamoto, A. 1976. Column Chromatographic and Associated Procedures for Separation and Determination of Phosphatides and Glycolipids. In: Lipid Chromatographic Analysis. Marinetti, G. V. (Ed.) 2nd Edition. Volume 3. M Dekker, New York. pp 713–776.

    Google Scholar 

  • Sato, S., Hirayama, T., Hirazawa, N. 2008. Lipid content and fatty acid composition of the monogenean Neobenedenia girellae and comparison between the parasite and host fish species. Parasitology, 135: 967–975.

    Article  CAS  PubMed  Google Scholar 

  • Smyth, J.D. 1994. Animal Parasitology, Cambridge Univ. Pr., Cambridge.

    Google Scholar 

  • Smyth, J. D., McManus, D. P. 1989. The Physiology and Biochemistry of Cestodes. 2nd. Ed. Cambridge Univ. Pr., Cambridge.

    Google Scholar 

  • Tielens, A.G. M. 1997. Biochemistry of Trematodes. In: Advances in Trematode Biology, (Fried, B., Graczyk, T.K. Eds.), pp. 309–343. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Vykhrestyuk, N.P., Yarygina, G. V., Il’iasov, I. N. 1981. Lipids of Raillietina tetragona and Raillietina echinobothrida cestodes from the intestine of hens. Parazitologiia, 15: 525–532. (in Russian)

    CAS  Google Scholar 

  • Ward, C. W., Fairbairn, D. 1070. Enzymes of beta-oxidation and the tricarboxylic acid cycle in adult Hymenlepis diminuta (Cestode) and Ascaris lumbricoides (Nematoda). J. Parasit., 56: 1009–1012.

    Article  Google Scholar 

  • White, A., Handler, P., Smith, E. L. 1964. Principles of Biochemistry. McGraw-Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, M., Mukhopadhyay, D., Ghosh, D. et al. Analysis of major lipid classes and their fatty acids in a cestode parasite of domestic fowl, raillietina (Fuhrmannetta) echinobothrida. Proc Zool Soc 62, 131–137 (2009). https://doi.org/10.1007/s12595-009-0015-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-009-0015-3

Keywords

Navigation