Skip to main content
Log in

Variation in lipid and fatty acid uptake among nematode and cestode parasites and their host, domestic fowl: host–parasite interaction

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Lipid synthesis is an important process in most organisms as well as in helminths. The present observation shows the variation of lipid and fatty acid uptake among cestode, Raillietina (Fuhrmannetta) echinobothrida; nematode, Ascaridia galli and their host, Gallus domesticus, the common country fowl. Total lipid (TL), neutral lipid (NL), glycolipid (GL), phospholipid (PL) and their fatty acid of cestode, nematode and liver and intestinal fluid of the host were analyzed by thin layer chromatography and gas liquid chromatography respectively. The result shows that liver take more TL, PL and GL except NL. Utilization of lipid from intestinal fluid when compare between the parasites, it is found that TL and PL content of cestode are higher than nematode, whereas, nematode absorbs more NL and GL than cestode. The percent of cholesterol is more in cestode than nematode. Palmitic, stearic, oleic and linoleic are the predominant fatty acids among all the samples. The present study reveals that the cestode having large surface area is more opportunistic in the resource utilization over the nematode as well as the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackman RG (2000) Fatty acids in fish and shellfish. In: Chow CK (ed) Fatty acids in foods and their health implications. Marcel Dekker, New York, pp 153–172

    Google Scholar 

  • Ackman RG, Burgher RD (1965) Cod liver oil fatty acids as secondary reference standards in the GLC of polyunsaturated fatty acids of animal origin: analysis of a dermal oil of the Atlantic leather-back turtle. J Am Oil Chem Soc 42:38–42

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal R, Sanyal SN, Khera S (1989) Lipid metabolism and low molecular weight solute uptake in Ascaridia galli. Acta Vet Hung 37(4):335–347

    CAS  PubMed  Google Scholar 

  • Aisien SO, Ogiji EE (1989) Observations on the lipids of Oochoristica agamae (Cestoda). Parasitol Res 75:307–310

    Article  CAS  PubMed  Google Scholar 

  • Awharitoma AO, Opute FI, Ali SN, Obiamiwe BA (1988) Lipid composition of four species of amphistomes (trematode) from the rumen of cattle. Int J Parasitol 18:441–444

    Article  CAS  PubMed  Google Scholar 

  • Aziz T (2008) Hepatic lipidosis in Turkeys. World Poult 24(2):28–29

    Google Scholar 

  • Bailey HH, Fairbairn D (1968) Lipid metabolism in helminth parasites. V. Absorption of fatty acids and monoglycerides from micellar solution by Hymenolepis diminuta (Cestoda). Comp Biochem Physiol 26:819–836

    Article  CAS  Google Scholar 

  • Bankov I, Timanova A, Barrett J (1998) Sphingomyelin synthesis in helminthes: a minireview. Folia Parasitol 45:257–260

    CAS  PubMed  Google Scholar 

  • Barrett J (1981) Biochemistry of parasitic helminths. University Park Press, Baltimore

    Book  Google Scholar 

  • Barrett J (1983) Lipid metabolism. In: Arme C, Pappas PW (eds) Biology of Eucestoda, vol 2. Academic Press, London, pp 391–419

    Google Scholar 

  • Barrett J, Cain GD, Fairbairn D (1970) Sterols in Ascaris lumbricoides (Nematoda), Macracan thorynchus hirudinaceus and Moniliformis dubius (Acanthocephala) and Echinostoma revolutum (Trematoda). J Parasitol 56:1004–1008

    Article  CAS  PubMed  Google Scholar 

  • Beames CG Jr, Harris BG, Hopper FA Jr (1967) The synthesis of fatty acids from acetate by intact tissue and muscle extract of Ascaris lumbricoides suum. Comp Biochem Physiol 20:509–521

    Article  CAS  PubMed  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L, Clarke ND (2002) Biochemistry, 5th edn. Freeman, New York

    Google Scholar 

  • Billecocq A (1987) Protection by phospholipids of Schistosoma mansoni schistosomula against the action of cytotoxic antibodies and complement. Mol Biochem Parasitol 25(2):133–142

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Boon JJ, Leeuw JW, Hoek GJ, Vosjan JH (1977) Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branched β-hydroxyl acids in Desulfovibrio desulfuricans. J Bacteriol 129(3):1183–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brouwers JF, Smeenk IM, van Golde LM, Tielens AG (1997) The incorporation, modification and turnover of fatty acids in adult Schistosoma mansoni. Mol Biochem Parasitol 88:175–185

    Article  CAS  PubMed  Google Scholar 

  • Bush AO, Fernandez JC, Esch GW, Seed JR (2001) Parasitism: the diversity and ecology of animal parasites. Cambridge University Press, Cambridge

    Google Scholar 

  • Chen J, Ferris H, Scow KM, Graham KJ (2001) Fatty acid composition and dynamics of selected fungal-feeding nematodes and fungi. Comp Biochem Physiol B 130:135–144

    Article  CAS  PubMed  Google Scholar 

  • Cheng TC (1986) General parasitology, 2nd edn. Academic Press, New Yoek

    Google Scholar 

  • Chicco AJ, Sparagna GC (2007) Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 292:C33–C44

    Article  CAS  PubMed  Google Scholar 

  • Christie WW (2003) Lipid analysis, 3rd edn. Oily Press, Bridgwater

    Google Scholar 

  • Conn EE, Stumpf PK, Bruening G, Doi RH (2003) Outlines of biochemistry, 5th edn. Wiley, Singapore

    Google Scholar 

  • Dalton JP, Skelly P, Halton DW (2004) Role of the tegument and gut in nutrient uptake by parasitic platyhelminthes. Can J Zool 82:211–232

    Article  Google Scholar 

  • Dawkins R (1986) The blind watchmaker. W.W. Norton, New York

    Google Scholar 

  • Dennis RD, Baumeister S, Lauer G, Richter R, Geyer E (1996) Neutral glycolipids of Schistosoma mansoni as feasible antigens in the detection of schistosomiasis. Parasitology 112:295–307

    Article  CAS  PubMed  Google Scholar 

  • Dey C, Misra KK (2009) Ultrastructural studies of internuncial processes in the tegument of a cyclophyllid cestode Raillietina (Fuhrmannetta) echinobothrida, a parasite of country fowl Gallus domesticus. Proc Zool Soc 62:29–37

    Article  Google Scholar 

  • Fairbairn D (1969) Lipid components and metabolism of Acanthocephala and Nematoda. In: Florkin M, Scheer BT (eds) Chemical zoology, vol 3. Academic Press, New York, pp 361–378

    Chapter  Google Scholar 

  • Fairbairn D, Wertheim G, Harpur RP, Schiller EL (1961) Biochemistry of normal and irradiated strains of Hymenolepis diminuta. Exp Parasitol 11(2):248–263

    Article  CAS  PubMed  Google Scholar 

  • Fekete SG, Kellems RO (2007) Interrelationship of feeding with immunity and parasitic infection: a review. Vet Med 52(4):131–143

    CAS  Google Scholar 

  • Fredrickson DS, Levy RI (1972) Familial hyperlipoproteinemia. In: Stanbury JB, Wyngaarden JB, Fredrickson DS (eds) In the metabolic basis of inherited disease, vol 3. McGraw-Hill, New York

    Google Scholar 

  • Fripp PJ, Williams G, Crawford MA (1976) The differences between the long chain polyenoic acids of adult Schistosoma mansoni and the serum of its host. Comp Biochem Physiol 53B:505–507

    Google Scholar 

  • Furlong ST (1991) Unique roles for lipids in Schistosoma mansoni. Parasitol Today 7:59–62

    Article  CAS  PubMed  Google Scholar 

  • Gardocki ME, Jani N, Lopes JM (2005) Phosphatidylinositol biosynthesis: biochemistry and regulation. Biochim Biophys Acta 1735:89–100

    Article  CAS  PubMed  Google Scholar 

  • Ghosh D, Misra KK (2011) Major lipids and fatty acids in the liver and rumen fluid of the goat (Capra hircus) infected with the trematode Paramphistomum cervi. J Helminthol 85(03):246–254

    Article  CAS  PubMed  Google Scholar 

  • Ghosh D, Misra KK (2014) Comparison of fatty acid contents of the neutral and phospholipids of the trematode Paramphistomum cervi and liver of its host, Capra hircus. J Parasit Dis 38:223–232

    Article  PubMed  Google Scholar 

  • Ghosh A, Kar K, Ghosh D, Dey C, Misra KK (2010) Major lipid classes and their fatty acids in a parasitic nematode, Ascaridia galli. J Parasit Dis 34(1):52–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Haites RE, Morita YS, McConville MJ, Jacobe HB (2005) Function of phosphatidylinositol in mycobacteria. J Biol Chem 280:10981–10987

    Article  CAS  PubMed  Google Scholar 

  • Halas V, Kovacs M, Babinszky L (2006) Impact of nutrient supply on the immune functions in pig. Literature review. Magy Allatorv Lapja 128:535–543 (in Hungarian with English abstruct)

    Google Scholar 

  • Harrington GW (1965) The lipid content of Hymenolepis diminuta and Hymenolepis citelli. Exp Parasitol 17:287–295

    Article  CAS  PubMed  Google Scholar 

  • Horikawa M, Sakamoto K (2010) Polyunsaturated fatty acids are involved in regulatory mechanism of fatty acid homeostasis via daf-2/insulin signaling in Caenorhabditis elegans. Mol Cell Endocrinol 323(2):183–192

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Turner N, Storlein LH, Else P (2005) Dietary fats and membrane function: implications for metabolism and disease. Biol Rev 80(1):155–169

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson WF, Turner AC, Grayson DP, White HB Jr (1976) Lipid analysis of the adult dog heartworm Dirofilaria immitis. Comp Biochem Physiol 53B:495–497

    Google Scholar 

  • Jacob J (1976) Bird waxes. In: Kolattukudy PE (ed) Chemistry and biochemistry of natural waxes. Elsevier, Amsterdam, pp 93–146

    Google Scholar 

  • Jadhav BV (2008) Biosystematic studies of Davainea shindei n. sp. (Cestoda: Davainidae Furhmall, 1907) from Gallus gallus domesticus. Natl Acad Sci Lett 31:7–8

    Google Scholar 

  • Jetter R, Kunst L (2008) Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J 54(4):670–683

    Article  CAS  PubMed  Google Scholar 

  • Johnson WJ, Cain GD (1988) Studies on the mechanism of cholesterol uptake by the rat tapeworm Hymenolepis diminuta (Cestoda). Comp Biochem Physiol B 91:59–67

    CAS  PubMed  Google Scholar 

  • Kaneda T (1991) Iso and anteiso-fatty acids in bacteria: biosynthesis, function and taxonomic significance. Microbiol Rev 55(2):288–302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapur J, Sood ML (1987) Changes in lipids and free fatty acid fractions in adult Haemonchus contortus during incubation in vitro. Vet Parasitol 23(1–2):95–103

    Article  CAS  PubMed  Google Scholar 

  • Knights BA (1973) Quantitative and qualitative analysis of plant sterols by gas-liquid chromatography. In: Heftman E (ed) Modern methods of steroid analysis. Academic Press, New York, pp 103–138

    Chapter  Google Scholar 

  • Kremer JJ, Sklansky DJ, Murphy RM (2001) Profile of changes in lipid bilayer structure caused by beta-amyloid peptide. Biochemistry 40:8563–8571

    Article  CAS  PubMed  Google Scholar 

  • Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727

    Article  CAS  PubMed  Google Scholar 

  • Kurzchalia TV, Ward S (2003) Why do worms need cholesterol? Nat Cell Biol 5:684–688

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Kubo T, Kono N, Kage-Nakadai E, Gengyo-Ando K, Mitani S, Inoqu T, Arai H (2012) Depletion of mboa-7, an enzyme that incorporates polyunsaturated fatty acids into phosphatidylinositol (PI), impairs PI3-phosphate signaling in Caenorhabditis elegans. Genes Cells 17(9):748–757

    Article  CAS  PubMed  Google Scholar 

  • Mangold HK (1969) In: Stahl E (ed) Thin layer chromatography. Springer, New York, p 155

  • Matsuoka K, Nakazawa T, Nakamura A, Honda C, Endo K, Tsukada M (2008) Study of thermodynamic parameters for solubilization of plant sterol and stanol in bile salt micelles. Chem Phys Lipids 154(2):87–93

    Article  CAS  PubMed  Google Scholar 

  • Maxfield FR (2002) Plasma membrane microdomains. Curr Opin Cell Biol 14:483–487

    Article  CAS  PubMed  Google Scholar 

  • Mayes PA, Botham KM (2003) Metabolism of unsaturated fatty acids and eicosanoids. In: Murray RK, Granner DK, Mayes PA, Rodwell VW (eds) Harper’s illustrated biochemistry, 26th edn. McGraw-Hill, New Delhi

    Google Scholar 

  • Meyer F, Kimura S, Mueller JL (1966) Lipid metabolism in the larval and adult forms of the tapeworm Spirometra mansonoides. J Biol Chem 241:4224–4232

    CAS  PubMed  Google Scholar 

  • Meyer F, Meyer H, Bueding E (1970) Lipid metabolism in the parasitic and free-living flatworms, Schistosoma mansoni and Dugesia dorotocephala. Biochem Biophys Acta 210:257–266

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Ghosh A (1991) Analysis of epicuticular waxes. In: Linsken HF, Jackson JF (eds) Modern methods of plant analysis, vol 12. Springer, Berlin, p 205

    Google Scholar 

  • Misra S, Ghosh A, Dutta J (1984) Production and composition of microbial fat from Rhodotorula glutinis. J Sci Food Agric 35:59–65

    Article  CAS  Google Scholar 

  • Mondal J, Dey C (2015) Lipid and fatty acid composition of a trematode, Isoparorchis hypselobagri Billet, 1898 (Digenea: Isoparorchiidae) infecting swim bladder of Wallago attu in the district North 24-Parganas of West Bengal. J Parasit Dis 39:67–72. doi:10.1007/s12639-013-0283-8

    Article  PubMed  Google Scholar 

  • Mondal M, Mukhopadhyay D, Ghosh D, Dey C, Misra KK (2009) Analysis of major lipid classes and their fatty acids in a cestode parasite of domestic fowl, Raillietina (Fuhrmannetta) echinobothrida. Proc Zool Soc 62(2):131–137

    Article  Google Scholar 

  • Pallares-Trujillo J, Lopez-Soriano FJ, Argiles JM (2000) Lipids: a key role in multidrug resistance? (review). Int J Oncol 16:783–798

    CAS  PubMed  Google Scholar 

  • Payrastre B (2004) Phosphoinositides. In: Nicolaou A, Kokotos G (eds) Bioactive lipids. Oily Press, Bridgwater, pp 63–84

    Google Scholar 

  • Pearce EJ, Sher A (1989) Three major surface antigens of Schistosoma mansoni are linked to the membrane by glycosylphosphatidylinositol. J Immunol 142:979–984

    CAS  PubMed  Google Scholar 

  • Rouser G, Kritchevsky G, Yamamoto A (1967) Column Chromatographic and Associated Procedures for Separation and Determination of Phosphatides and Glycolipids. In: Marinetti GV (ed) Lipid chromatographic analysis, vol 1. Marcel Dekker, New York, p 99

    Google Scholar 

  • Rouser G, Kritchevsky G, Yamamoto A (1976) Column Chromatographic and Associated Procedures for Separation and Determination of Phosphatides and Glycolipids. In: Marinetti GV (ed) Lipid chromatographic analysis, vol 2, 2nd edn. Marcel Dekker, New York, p 713–776

  • Sanz M, Flores A, Lopez-Bote CJ (2000) The metabolic use of energy from dietary fat in broilers is affected by fatty acid saturation. Br Poult Sci 41(1):61–68

    Article  CAS  PubMed  Google Scholar 

  • Sarwal R, Sanyal SN, Khera S (1989) Lipid metabolism in Trichuris globulosa (Nematoda). J Helminthol 63(4):287–297

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Hirayama T, Hirazawa N (2008) Lipid content and fatty acid composition of the monogenean Neobenedenia girellae and comparison between the host fish species. Parasitology 135:967–975

    Article  CAS  PubMed  Google Scholar 

  • Scaife JR, Moyo J, Galbraith H, Michie W, Campbell V (1994) Effect of different dietary supplemental fats and oils on the tissue fatty acid composition and growth of female broilers. Br Poult Sci 35(1):107–118

    Article  CAS  PubMed  Google Scholar 

  • Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288

    Article  CAS  PubMed  Google Scholar 

  • Sherman IW (1998) Carbohydrate metabolism of asexual stages. In: Sherman IW (ed) Malaria: parasite biology, pathogenesis and protection. ASM Press, Washington, DC, pp 135–143

    Google Scholar 

  • Silveira AM, Friche AA, Rumjanek FD (1986) Transfer of (14C) cholesterol and its metabolites between adult male and female worms of Schistosoma mansoni. Comp Biochem Physiol B 85:851–857

    CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP (2006) Evolutionary aspects of diet, the ω-6/ω-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother 60:502–507

    Article  CAS  PubMed  Google Scholar 

  • Smith TM, Doughty BL, Brown JN (1977) Fatty acid lipid class composition of Schistosoma japonicum eggs. Comp Biochem Physiol 57B:59–63

    Google Scholar 

  • Smyth JD, McManus DP (1989) The physiology and biochemistry of cestodes, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Smyth VP, Selkirk ME, Gounaris K (1996) Identification and composition of lipid classes in surface and somatic preparations of adult Brugia malayi. Mol Biochem Parasitol 76:105–116

    Article  Google Scholar 

  • Tarr GE (1973) Comparison of ascarosides from four species of ascarid and one of oxurid (Nematoda). Comp Biochem Physiol 46B:167–176

    Google Scholar 

  • Tielens AGM (1997) Biochemistry of trematodes. In: Fried B, Graczyk TK (eds) Advances in trematode biology. CRC Press, Boca Raton, pp 309–343

    Google Scholar 

  • Tielens AGM, van der Kleij D, Yazdanbakhsh M (1999) Recognition of schistosome glycolipids by immunoglobulin E: possible role in immunity. Infect Immun 67(11):5946–5950

    PubMed  PubMed Central  Google Scholar 

  • Vance JE (2008) Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res 49:1377–1387

    Article  CAS  PubMed  Google Scholar 

  • Vance JE, Steenbergen R (2005) Metabolism and functions of phosphatidylserine. Prog Lipid Res 44:207–234

    Article  CAS  PubMed  Google Scholar 

  • Vance DE, Vance JE (2002) Biochemistry of lipids, lipoproteins and membranes, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Von Brand T (1952) Chemical physiology of endoparasitic animals. Academic Press, New York

    Google Scholar 

  • Von Brand T (1973) Biochemistry of parasites, 2nd edn. Academic Press, New York

    Google Scholar 

  • Vykhrestyuk NP, Yarygina GV (1982) Preliminary studies of lipids of the trematodes Eurytrema pancreaticum, Calicophoron erschowi and the turbellarian Penecurva sibirica. Mol Biochem Parasitol 5:221–229

    Article  CAS  PubMed  Google Scholar 

  • Vykhrestyuk NP, Yarygina GV, Il’iasov IN (1981) Lipids of Raillietina tetragona and Raillietina echinobothrida cestodes from the intestines of hens. Parazitologiia 15(6):525–532

    CAS  Google Scholar 

  • Ward CW, Fairbairn D (1970) Enzymes of β-oxidation and their function during development of Ascaris lumbricoides. Dev Biol 22:366–387

    Article  CAS  PubMed  Google Scholar 

  • Weber N, Vosmann K, Aitzetmuller K, Filipponi C, Taraschewski H (1994) Sterol and fatty acid composition of neutral lipids of Paratenuisentis ambiguus and its host eel. Lipids 29(6):421–427

    Article  CAS  PubMed  Google Scholar 

  • White A, Handler P, Smith EL (1964) Principles of biochemistry. McGraw-Hill, New York

    Google Scholar 

  • Wu R, Chen L, Yu Z, Quinn PJ (2006) Phase diagram of stigmasterol-dipalmitoylphosphatidylcholine mixtures dispersed in excess water. Biochim Biophys Acta Biomembr 1758:764–771

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Head, Department of Zoology, Vidyasagar University for necessary laboratory facilities. The authors (M.M. and K.K.M.) are also grateful to Dr. U. C. Pal, Principal, to Dr. P.P. Chakraborty, Head of the Department of Zoology, Raja N. L. Khan women’s College, Medinipur for allowing the laboratory facility of the college. In this connection, it will not be out of place to mention the support of all the respected teachers of the Department of Zoology. The authors are indebted to late Dr. A. Ghosh, President, Drug Research and Development Centre, Kolkata, India for GLC analysis of the samples and necessary help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Misra.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, M., Kundu, J.K. & Misra, K.K. Variation in lipid and fatty acid uptake among nematode and cestode parasites and their host, domestic fowl: host–parasite interaction. J Parasit Dis 40, 1494–1518 (2016). https://doi.org/10.1007/s12639-015-0718-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-015-0718-5

Keywords

Navigation