Skip to main content
Log in

Geomorphic Analysis of Baghain River, Yamuna Basin, and its Implication for Drainage Characteristic and Tectonics using Remote Sensing and GIS Techniques

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

The present study aims to access the geomorphic analysis of the Baghain river basin and its implication on landscape evolution. Baghain river originates from the Panna hill, and flows through marginal and central Ganga plain. It empties itself in to Yamuna river near Chilla village, Banda district, Uttar Pradesh. The river basin comprises of three major geological units associated with this basin: Bundelkhand gneissic complex, Vindhyan Supergroup (hard rock terrain known as Panna hill) and Alluvial deposit (marginal Ganga plain and central Ganga plain). The current work focuses on study of morphometric parameters and geomorphic indices of Baghain river basin using digital elevation model (DEM) and topographic maps (1:50,000 scale). This basin exhibits four types of drainage patterns: dendritic, parallel, trellis and rectangular. Bifurcations ratio (4.82) of river basin suggest that the most part of the basin is not influenced by any geological structures. The elongation ratio (0.50) suggests that the basin is moderately elongated. The drainage density (0.62) and stream frequency (0.22) also suggest that the basin has moderate to high permeable and easily erodible alluvium terrain.

The escarpment height is low in the proximal part (Panna Hill) and high in the middle and distal parts of the basin (marginal Ganga plain and central Ganga plain, respectively. Asymmetric factor (52) shows a leftward tilt of the basin. The region lies under marginal Ganga plain, and Bundelkhand plateau. The sharp bend present is probably due to the lithological variation. It reflects moderate gradient in the upper part (Panna hill), steep gradient in the lower part (Panna hill), and low gradient in the marginal to central Ganga plain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, K.K., Singh, I.B. Sharma, M. and Sharma, S. (2002) Extensional tectonic activity in the craton ward parts (peripheral bulge) of the Ganga Plain foreland basin, India. Internat. Jour. Earth Sci., v.91, pp.897–905.

    Article  Google Scholar 

  • Bonsor, H.C., MacDonald, A.M. and Ahmed, K.M. (2017) Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. Hydrogeol. Jour., v.25, pp.1377–1406.

    Article  Google Scholar 

  • Bull, W.B. and Mc. Fadden, L.D. (1977) Tectonic geomorphology north and south Garlock fault, California. In: Doehring, D.O. (Ed.), Geomorphology in Arid Regions. Proceedings of the Eighth Annual Geomorphology Symposium, State University of New York. Binghamton, pp.115–138.

    Google Scholar 

  • Burnett, A.W. and Schumm, S.A. (1983) Alluvial river response to neotectonic deformation in Louisiana and Mississippi valley. Science, v.222, pp.49–50.

    Article  Google Scholar 

  • Cox, R.T. (1994) Analysis of drainage basin asymmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from the Mississippi embayment. Geol. Soc. Amer. Bull., v.106, pp.571–581.

    Article  Google Scholar 

  • Cuong, W.A. and Zuchiewicz, (2001) Morphotectonic properties of the Lo River fault near Tam Dao in North Vietnam, Natural Hazards Earth System Society, v.1, pp.15–22.

    Article  Google Scholar 

  • Das, S. (2021) Hydro-geomorphic characteristics of the Indian (Peninsular) catchments: Based on morphometric correlation with hydro-sedimentary data. Advan. Space Res., v.67, pp.2382–2397.

    Article  Google Scholar 

  • DeCelles, P.G. and Giles, K.A. (1996) Foreland basin systems. Basin Res., v.8, pp.105–123.

    Article  Google Scholar 

  • Dehbozorgi, M., Pourkermani, M., Arian, M., Matkan, A.A., Motamedi, H. and Hosseiniasl, A. (2010) Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology, v.121 (3–4), pp.329–341.

    Article  Google Scholar 

  • Dipak, R. Samal., Shirish, S. Gedam. and Nagarajan, R. (2015) GIS based drainage morphometry and its influence on hydrology in parts of Western Ghats region, Maharashtra, India. Geocarto Internat., v.30(7), pp.755–778.

    Article  Google Scholar 

  • Edwards, B.F. and Smith, D.H. (2002) River meandering dynamics, Phys. Rev. E., v.65, pp.046–303.

    Google Scholar 

  • Einstein, A. (1926) The cause of the formation of meanders in the courses of rivers and of the so-called Baer’s law. Die Naturwissenschaften., v.14, pp.1–3.

    Google Scholar 

  • Gautam, P.K. (2019) Spatio-Temporal Analysis of Sinuosity of Ghaghara River: A Remote Sensing and GIS Approach, International Jour. Sci. Res., v.8(9), pp. 1361–1364.

    Google Scholar 

  • Gautam, P.K., Singh, D.S., Kumar, D. and Singh, A.K. (2020) A GIS-based Approach in Drainage Morphometric Analysis of Sai River Basin, Uttar Pradesh, India. Jour. Geol. Soc. India., v.95, pp.366–376.

    Article  Google Scholar 

  • Ghosh, R., Srivastava, P., Shukla, U.K., Singh, I., Ray, P.C. and Sehgal, R.K., (2018) Tectonic forcing of evolution and Holocene erosion rate of ravines in the Marginal Ganga Plain, India. Jour. Asian Earth Sci., v.162, pp.137–147.

    Article  Google Scholar 

  • Gottschalk, L.C. (1964) Reservoir sedimentation, In: V. T. Chow, (Ed.), Handbook of Applied Hydrology, Section 7-1, McGraw-Hill, New York, NY, USA.

    Google Scholar 

  • Hack, J.T. (1957) Studies of longitudinal stream profiles in Virginia and Mary land. USGS Professional Paper v.294-B, pp.B45–897.

    Google Scholar 

  • Hadley, R.F. and Schumm, S.A. (1961) Sediment sources and drainage basin characteristics in upper Cheyenne River basin. USGS Water Supply Paper, 1531-B.

  • Hamdouni, El., Irigaray, R., Fernandez, C., Chacon, T. and Keller, E.A.J., (2008) Assessment of relative active tectonics, southwest border of Sierra Nevada (Southern Spain). Geomorphology, v.96, pp.150–173.

    Article  Google Scholar 

  • Hare, P.W. and Gardner, T.W. (1985) Geomorphicindicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, CostaRica. In: Morisawa, M., Hack, J.T. (Eds.), Tectonic geomorphology: proceedings of the 15thannualbinghamton geomorphology symposium. Allen Unwin, Boston, 90–104p.

    Google Scholar 

  • Hayakawa, Y.S. and Oguchi, T. (2013) Spatial correspondence of knick zones and stream confluences along bedrock rivers in Japan: implications for hydraulic formation of knick zones. Geogr. Ann. Ser A, Phys. Geogr., doi:https://doi.org/10.1111/geoa.12024.

  • Horton, R.E. (1932) Drainage basin characteristics. Trans. Amer. Geophys. Union, v.13, pp.350–361.

    Article  Google Scholar 

  • Horton, RE. (1945) Erosional developments of streams and their drainage basin: hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Amer., v.56, pp.275–370.

    Article  Google Scholar 

  • Ikeda, S., Parker, G. and Sawai, K. (1981) Bend theory of river meanders, part 1. Linear development. Jour. Fluid. Mech., v.112, pp.363–377.

    Article  Google Scholar 

  • Kale, V.S. and Shejwalkar, N. (2008) Uplift along the western margin of the Deccan Basalt Province: Is there any geomorphometric evidence? Jour. Earth Syst. Sci., v.117, pp.959–971.

    Article  Google Scholar 

  • Kale, V.S., Sengupta, S., Achyuthan, H. and Jaiswal, M.K. (2014) Tectonic controls upon Kaveri River drainage, cratonic Peninsular India: Inferences from longitudinal profiles, morphotectonic indices, hanging valleys and fluvial records. Geomorphology, v.227, pp.153–165.

    Article  Google Scholar 

  • Keller, E.A. (1986) Investigations of active tectonics: use of surgical earth processes. In Panel of active tectonics. National Academy Press, Washington D.C.

    Google Scholar 

  • Keller, E.A. and Pinter, N. (2002) Active Tectonics: Earthquakes, Uplift, and Landscape, second ed. Prentice Hall, New Jersey, 1362p.

    Google Scholar 

  • Kumar, D. (2015) Geomorphology of Ghaghara-Ganga interfluve between Faizabad and Kanpur region. Ph. D. Thesis, Geology Department, Lucknow University, Lucknow, India, 144p.

    Google Scholar 

  • Kumar, D., Singh, D.S., Prajapati, S.K., Khan, I., Gautam, P.K. and Vishawakarma, B. (2018) Morphometric Parameters and Neotectonics of Kalyani River Basin, Ganga Plain: A Remote Sensing and GIS Approach. Jour. Geol. Soc. India., v.91, pp.679–686.

    Article  Google Scholar 

  • Kumar, G., Khanna, P.C. and Prasad, S., (1996) Sequence stratigraphy of the foredeep and evolution of Indo-Gangetic plain, Uttar Pradesh. Proceedings of Symposium on NW Himalaya and Foredeep. Geological Society of India, v.21, pp.173–207.

    Google Scholar 

  • Leopold, L.B., Wolman, M.G. and Miller, J.P. (1964) Fluvial processes in geomorphology. San Francisco, WH Freeman, and Co, 520p.

    Google Scholar 

  • Melton, M.A. (1957) An analysis of the relations among elements of climate, surface properties and geomorphology. Project. NR 389-042. Tech. Report. 11, Columbia University, Department of Geology, ONR, Geography Branch, New York.

    Google Scholar 

  • Misra, M.N., Srivastava, R.N., Upadhyaya, M.C. and Srivastava, M.P., (1994) Quaternary geology and and morphotectonic evolution of the Lower Sindh Basin, Marginal Gangetic Plain, M.P. and U.P. Jour. Geol. Soc. India, v.43, pp.677–684.

    Google Scholar 

  • Mohindra, R. and Parkash, B. (1994) Geomorphology and neotectonic activity of the Gandak Megafan and adjoining areas, middle Gangetic plains. Jour. Geol. Soc. India, v.43, pp.149–157.

    Google Scholar 

  • Mohindra, R. Parkash, B. and Prasad, J. (1992) Historical geomorphology and pedology of the Gandak Megafan, Middle Gangetic Plains, India. Earth Surf. Proces. Landforms, v.17, pp.643–662.

    Article  Google Scholar 

  • Nag, S.K., and Chakraborty, S. (2003) Influences of rock types and structure in the development of drainage network in hard rock area. Jour. Indian Soc. Remote Sens., v.31(1), pp.25–35.

    Article  Google Scholar 

  • Ouchi, S. (1985) Response of alluvial rivers to slow active tectonic movement. Geol. Soc. Amer. Bull., v.96, pp.504–515.

    Article  Google Scholar 

  • Pareta, K. and Pareta, U. (2011) Quantitative morphometric analysis of a watershed of Yamuna basin, India using ASTER (DEM) data and GIS. Internat. Jour. Geomatics Geosci., v.2(1), pp.248–269.

    Google Scholar 

  • Parkash, B., Kumar, S., Rao, M.S., Giri, S.C., Kumar, S.C., Gupta, S. and Srivastava, P., (2000) Holocene tectonic movements and stress fields in the western Gangetic Plain. Curr. Sci., v.78, pp.438–449.

    Google Scholar 

  • Patel, D., Gajjar, C. and Srivastava, P.K. (2013) Prioritization of Malesari mini- watersheds through morphometric analysis: a remote sensing and GIS perspective. Environ. Earth Sci., v.69, pp. 2643–2656.

    Article  Google Scholar 

  • Pati, K.J. (2020) Evolution of Bundelkhand Craton, Episodes, v.49(1), pp. 69–87.

    Article  Google Scholar 

  • Perez-Pena, J.V., Azor, A., Azanon, J.M. and Keller, E.A. (2010) Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, v.119, pp.74–87.

    Article  Google Scholar 

  • Raj, R. (2012) Active tectonics of NE Gujarat (India) by morphometric and morphostructural studies of Vatrak River basin. Jour. Asian Earth Sci., v.50, pp.66–78.

    Article  Google Scholar 

  • Ramírez-Herrera, M.T. (1998) Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surf. Proces. Landforms, v.23, pp.317–33.

    Article  Google Scholar 

  • Schumm, S.A. (1963) Sinuosity of alluvial rivers in the Great Plains. Bull. Geol. Soc. Amer., v.74, pp.1089–1100.

    Article  Google Scholar 

  • Schumm, S.A., Dumont, J.F. and Holbrook, J.M. (2000) Active Tectonics and Alluvial Rivers. United Kingdom: Cambridge University Press.

    Google Scholar 

  • Sharma, S. Sarma, J.N. (2013) Drainage analysis in a part of the Brahmaputra Valley in Sivasagar District, Assam, India, to detect the role of nontectonic activity. Jour. Indian Soc. Rem Sens., v.41(4), pp.895–904.

    Article  Google Scholar 

  • Singh, C.K. and Srivastava, V. (2011) Morphotectonics of the Area around Renukoot, district Sonbhadra, U.P. using remote sensing and GIS techniques. Jour. Indian Soc. Rem Sens., v.39(2), pp.235–240.

    Article  Google Scholar 

  • Singh, D.S. (2018) Concept of Rivers: An Introduction for Scientific and Socioeconomic Aspects. In: Dhruv Shen Singh (Eds.), The Indian River: Scientific and socio economic Aspects, Springer Hydrogeology, 23p.

  • Singh, D.S. and Awasthi, A. (2011a) Natural Hazards in the Ghaghara River Area, Ganga Plain, India. Natural Hazards, v.57, pp.213–225.

    Article  Google Scholar 

  • Singh, D.S. and Awasthi, A. (2011b) Implication of Drainage Basin Parameters of Chhoti Gandak River, Ganga Plain, India. Jour. Geol. Soc. India, v.78(2), pp.370–378.

    Article  Google Scholar 

  • Singh, D.S. and Gautam, P.K. (2018) Burhi Gandak River: place of the first republic of the world. The Indian Rivers: Scientific and Socio-Economic Aspects. 1st edt. Springer Hydrogeology, v.2. pp.209–219.

  • Singh, D.S. and Nishat (2018) The Yamuna River: Longest Tributary of Ganga. The Indian Rivers: Scientific and Socio-Economic Aspects. 1st edt. Springer Hydrogeology, v.2. pp.123–133.

    Google Scholar 

  • Singh, D.S. and Singh I.B. (2005) Facies architecture of the Gandak Megafan, Ganga Plain, India. Palaeontol. Soc. India, Spec. Publ., v.2, pp.125–140.

    Google Scholar 

  • Singh, D.S., Awasthi, A. and Bhardwaj, V. (2009) Control of Tectonics and Climate on Chhoti Gandak River Basin, East Ganga Plain, India. Himalayan Geol., v.30(2), pp.147–154.

    Google Scholar 

  • Singh, D.S., Dubey, C.A., Singh, A.K. and Ravindra, R. (2022) Geomorphology and Landscape Evolution of Ny-Alesund Region and Its Implication for Tectonic, Svalbard, Arctic. National Centre for Polar and Ocean Research. In: Climate Change in the Arctic (pp.65–82). doi:https://doi.org/10.1201/9781003265177-5.

  • Singh, D.S., Kumar, P., Kumar, D., Nishat, Awasthi, A. and Bhardwaj, V. (2013) Sedimentology and Channel Pattern of the Chhoti Gandak River, Ganga Plain, India. Gondwana Geol. Mag., v.28(2), pp.171–180.

    Google Scholar 

  • Singh, D.S., Prajapati, S.K., Singh, P., Singh, K. and Kumar, D. (2015) Climatically induced levee break and flood risk management of the Gorakhpur region. Rapti River Basin, Ganga Plain, India. Jour. Geol. Soc. India., v.85, pp.79–86.

    Article  Google Scholar 

  • Singh, I.B. (1992) Geological evolution of the Ganga Plain: present status. In: Singh, I.B, (Ed.), Gangetic Plain: Terra Incognita. Geology Department, Lucknow University, Lucknow 1–14p.

    Google Scholar 

  • Singh, I.B. (1996) Geological evolution of Ganga Plain -an overview. Jour. Palaeontol. Soc. India, v.41, pp.99–137.

    Google Scholar 

  • Singh, I.B. (2001) Proxy records of neotectonics, climate change and anthropogenic activity in the late Quaternary of Ganga Plain. Geol. Surv. India Spec. Publ. v.65(1), XXXIII–L.

    Google Scholar 

  • Singh, I.B. (2004) Late Quaternary History of the Ganga Plain. Jour. Geol. Soc. India, v.64, pp.431–454.

    Google Scholar 

  • Singh, I.B. and Bajpai, V.N. (1989) Significance of syndepositional tectonics in facies development, Gangetic alluvium near Kanpur, Uttar Pradesh: Jour. Geol. Soc. India, v.34, pp.61–66.

    Google Scholar 

  • Singh, I.B. and Ghosh, D.K. (1994) Geomorphology and neotectonic features of Indo-Gangetic Plain. In: Mukerji AB, Dixit KR, Kale VS, Kaul MN, eds. Geomorphological diversity. Rawat Publications, Jaipur and New Delhi, pp.270–286.

    Google Scholar 

  • Singh, I.B. and Rastogi, S.P. (1973) Tectonic framework of Gangetic alluvium with special reference to Ganga River in Uttar Pradesh. Curr. Sci., v.42, pp.305–307.

    Google Scholar 

  • Singh, I.B. (1999) Tectonic control on sedimentation in Ganga Plain foreland basin: constrained on Siwalik sedimentation models. In: Jain, A.K. and Manickavasagam, R.M. (Eds.), Geodynamics of the NW Himalaya. Gondwana Res. Group Mem., v.6, pp.247–262.

  • Singh, I.B., Ansari, A.A., Chandel, R.S. and Misra, A., (1996) Neotectonic control on drainage system in Gangetic plain, Uttar Pradesh. Jour. Geol. Soc. India, v.47, pp.599–609.

    Google Scholar 

  • Singh, V. and Tandon, S.K. (2007) Evidence and consequences of tilting of two alluvial fans in the Pinjaur dun, Northwestern Himalayan foothills. Quaternary Internal., v.59(1), pp.21–31.

    Google Scholar 

  • Sinha, R., Kettanah, M.R. and Gibling, S.K. (2014) Craton-derived alluvium as a major sediment source in the Himalaya Foreland Basin of India. Geol. Soc. Amer. Bull., v.121(11–12), pp.1596–1610.

    Google Scholar 

  • Sreedevi, P.D., Subrahmanyam, K. and Ahmed, S. (2004) The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environ. Geol., v.47, pp.412–420.

    Article  Google Scholar 

  • Srivastava, P., Kumar, Pal. D. and Manini, Aruche. K. (2015) Soils of the Indo-Gangetic Plain: a pedogenic response to landscape stability, climatic variability and anthropogenic activity during the Holocene. Earth Sci. Rev. doi: https://doi.org/10.1016/j.earscirev.2014.10.010.

  • Srivastava, P., Parkash, B., Sehgal, J.L. and Kumar, S. (1994) Role of neotectonics and climate in development of the Holocene geomorphology and soils of the Gangetic Plains between the Ramganga and Rapti Rivers. Sediment. Geol.. v.94, pp.129–151.

    Article  Google Scholar 

  • Srivastava, P., Singh, I.B., Sharma, M. and Singhvi, A.K., (2003) Luminescence chronometry and Late Quaternary geomorphic history of the Ganga Plains, India. Palaeogeo., Paleoclimat., Palaeoecol., v.197, pp.15–41.

    Article  Google Scholar 

  • Stammler, K.L., Yates, A.G. and Bailey, R.C. (2013) Buried streams: uncovering a potential threat to aquatic ecosystems. Landsc. Urban Plan., v.114, pp.37–41.

    Article  Google Scholar 

  • Strahler, A.N. (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Amer. Bull., v.63, pp.1117–1142.

    Article  Google Scholar 

  • Strahler, A.N. (1956) Quantitative Slope Analysis. Geol. Soc. Amer. Bull., 67p.

  • Strahler, A.N. (1957) Quantitative analysis of watershed Geomorphology. Amer. Geophys. Union Trans., v.38, pp.913–920.

    Article  Google Scholar 

  • Strahler, A.N. (1964) Quantitative geomorphology of drainage basin and channel networks. In: Chow VT (Ed.), Handbook of Applied Hydrology. McGraw Hill Book Company, New York section, 4p.

  • Tarboton, D. G., Bras, R.L. and Rodriguez-Iturbe, I. (1991) On the Extraction of Channel Networks from Digital Elevation Data. Hydrological Processes, v.5, pp.81–100.

    Article  Google Scholar 

  • Thakur, A. (2007) Morphology and Basin Characteristics of the Gomati River, the Ganga Plain, India. (Unpublished Ph.D. Thesis) Centre of Advanced Study in Geology, University of Lucknow, 125p.

  • Timar, G. (2003) Controls on channel sinuosity changes, a case study of the Tisza River, the Great Hungarian Plain. Quaternary Sci. Rev., v.22(20), pp.2199–2207.

    Article  Google Scholar 

  • Trivedi, A., Singh, D.S., Chauhan, M.S., Arya, A., Bhardwaj, V. and Awasthi, A. (2011) Vegetation and climate change around Ropan Chhappra Tal in Deoria District, The Central Ganga Plain During The Last 1350 Years. Jour. Palaeontol. Soc. India, v.56(1), pp.39–43.

    Google Scholar 

  • Verstappen, H.T. (1983) Applied geomorphology: geomorphological surveys for environments development. Elsevier, Amsterdam.

    Google Scholar 

  • Wakode, H.B., Dutta, D., Desai, V.R., Baier, K. and Azzam, R. (2013) Morphometric analysis of the upper catchment of Kosi River using GIS techniques. Arabian Jour. Geosci., v.6, pp.395–408.

    Article  Google Scholar 

  • Wyzga, B. (2006) River response to channel regulation: case study of the Raba River, Carpathians, Poland. Earth Surf. Proc. Land., v.18(6), pp.541–556.

    Article  Google Scholar 

  • Zhang, L. and Guilbert, E. (2013) Automatic Drainage Pattern Recognition in River Networks. Internat. Jour. Geograph. Inform. Sci., v.27(12), pp.2319–2342.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head of Department of Geology, University of Lucknow, Lucknow, India for providing the working facilities. Pawan Kumar Gautam gratefully acknowledges the UGC RGNF Fellowship SRF (RGNF-2017-18-SC-UTT-34263) for pursuing a Ph.D. Degree at the University of Lucknow, Lucknow, India and Anoop Kumar Singh to SERB NPDF (PDF/2020/000251) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar Gautam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, P.K., Singh, D.S., Singh, A.K. et al. Geomorphic Analysis of Baghain River, Yamuna Basin, and its Implication for Drainage Characteristic and Tectonics using Remote Sensing and GIS Techniques. J Geol Soc India 98, 1573–1584 (2022). https://doi.org/10.1007/s12594-022-2214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-2214-8

Navigation