Skip to main content

Advertisement

Log in

Assessment of Groundwater Pollution Vulnerability Using GIS Based Modified DRASTIC Model in Raipur City, Chhattisgarh

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

In the present study DRASTIC model was used to assess the groundwater vulnerable zone for Raipur city. In this study DRASTIC model is modified into four ways i.e. DRASTIC, Modified DRASTIC-Lu, DRASTIC AHP and Modified DRASTIC-Lu AHP. To modify the DRASTIC model, LULC parameter was added in the real DRASTIC model and also AHP technique applied to determine the rating and weight. In this study, it is observed that 2.83%, 7.57%, 32.03%, 47.78% and 9.8% areas are respectively falling under very low, low, moderate, high and very high vulnerable DRASTIC index, 2.56%, 10.96%, 30.10%, 47.47% and 8.9% areas are respectively falling under very low, low, moderate, high and very high vulnerable modified DRASTIC-Lu index, 3.27%, 16.63%, 47.14%, 74.44% and 9.96% area are respectively falling under very low, low, moderate, high and very high vulnerable DRASTIC-AHP index classes and 2.74%, 12.27%, 38.16%, 41.5% and 5.3% area are respectively falling under very low, low, moderate, high and very high vulnerable modified DRASTIC-Lu AHP index. To determine the accuracy of the DRASTIC models, total 50 groundwater samples of nitrate concentration were used for pre-monsoon and post-monsoon seasons and it was observed that Modified DRASTIC-Lu AHP model is most accurate and suitable for present study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, A.A. (2009) Using Generic and Pesticide DRASTIC GIS-based models for vulnerability assessment of the Quaternary aquifer at Sohag, Egypt. Hydrogeol. Jour., v.17, pp.1203–1217. DOI 10.1007/s10040-009-0433-3.

    Article  Google Scholar 

  • Al-Adamat, R.A.N., Foster, I.D.L., Baban, S.M.J. (2003) Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC. Applied Geography, v.23, pp.303–324.

    Article  Google Scholar 

  • Aller, L., Bennet, T., Lehr, J.H., Petty, R.J., Hackett, G., (1987) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeological settings, EPA/600/2-87/035-USA: US Environmental Protection Agency.

    Google Scholar 

  • Almasri, M.N. (2008) Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer, Palestine. Jour. Environ. Managmt., v.88, pp.577–593.

    Article  Google Scholar 

  • Al-Rawabdeh, A. M. (2007) GIS-based approach to investigate the vulnerability of the Amman–Zerqa groundwater basin to contamination. AL al-Bayt University.

    Google Scholar 

  • Anane, M., Abidi, B., Lachaal, F., Limam, A. and Jellali S. (2013) GIS-based DRASTIC, Pesticide DRASTIC and the Susceptibility Index (SI): comparative study for evaluation of pollution potential in the Nabeul-Hammamet shallow aquifer, Tunisia. Hydrogeol. Jour., v.21, pp.715–731.

    Article  Google Scholar 

  • Awasthi, A. and Satyaveer, C.S. (2011) Using AHP and Dempster–Shafer theory for evaluating sustainable transport solutions. Environmental Modelling & Software, v.26(6), pp.787–796. doi: 10.1016/j.envsoft.2010.11.010.

    Article  Google Scholar 

  • Ariff, H., Sapuan, S.M., Ismail, N. and Yusoff, N. (2008) Use of Analytical Hierarchy Process (AHP) for Selecting The Best Design Concept. Jurnal Teknologi. v.49, pp.1–18. DOI: 10.11113/jt.v49.188.

    Article  Google Scholar 

  • Beynon, M., Curry, B. and Morgan, P. (2000) The Dempster–Shafer theory of evidence: an alternative approach to multicriteria decision modelling. Omega. v.28(1), pp.37–50.

    Article  Google Scholar 

  • Chuang, P.T. (2001) Combining the analytic hierarchy process and quality function deployment for a location decision from a requirement perspective. Internat. Jour. Advd. Manuf. Technol., v.18, pp.842–849.

    Article  Google Scholar 

  • Das, A., Maiti, S., Naidu, S. and Gupta, G. (2017) Estimation of spatial variability of aquifer parameters from geophysical methods: a case study of Sindhudurg district, Maharashtra, India. Stoch. Environ. Res. Risk. Assess., v.31, pp.1709–1726, DOI: 10.1007/s00477-016-1317-4.

    Article  Google Scholar 

  • Dengiz, O., Arif Özyazici, M. and Saglam, M. (2015) Multi-criteria assessment and geostatistical approach for determination of rice growing suitability sites in Gokirmak catchment. Paddy Water Environ, v.13, pp.1–10. DOI: 10.1007/s10333-013-0400-4.

    Article  Google Scholar 

  • Dixon, B. (2004) Prediction of groundwater vulnerability using an integrated GIS-based neuro-fuzzy techniques. Jour. Hydrol., v.4(309), pp.17–38.

    Google Scholar 

  • Dweiri, F. and Al-Oqla, F.M. (2006) Material Selection Using Analytical Hierarchy Process Internat. Jour. Computer Appli. Tech., v.26(4), pp.82–189.

    Google Scholar 

  • Eskandari, M., Homaee, M. and Falamaki, A. (2016) Landfill site selection for municipal solid wastes in mountainous areas with landslide susceptibility. Environ. Sci. Pollut. Res., v.23, pp.12423–12434, DOI: 10.1007/s11356-016-6459-x.

    Article  Google Scholar 

  • Evans, B. M. and Mayers, W. L. (1990). A GIS-based approach to evaluating regional groundwater pollution potential with DRASTIC. Jour. Soil and Water Conserv., v.45, pp.242–245.

    Google Scholar 

  • Fortin, M., Thomson, K.P.B. & Edwards, G. (1997). The role of error propagation for integrating multisource data within spatial models: The case of the DRASTIC groundwater vulnerability model. Earth Surface Remote Sensing. London: Procedure SPIE Conference. v.3222, pp.358–361.

    Article  Google Scholar 

  • Fritch, T.G., McKnight, C.L., Yelderman J.J.C. & Arnold, J.G. (2000). An aquifer vulnerability assessment of the paluxy aquifer, central Texas, USA, using GIS and a modified DRASTIC approach. Environ. Managmt., v.25, pp.337–345.

    Article  Google Scholar 

  • HO, W. (2008) Integrated Analytic Hierarchy Process and Its Applications–A Literature Review. European Jour. Operation Res., v.186, pp.211–228.

    Article  Google Scholar 

  • Ghazali, F. A. (1992). Poisoned waters, mindless industrialization polluting rivers. Nation and the World, v.15., pp.28–29

    Google Scholar 

  • Hammouri, N., Al-Amoush, H., Al-Raggad, M., Harahsheh, S. (2014) Groundwater recharge zones mapping using GIS: a case study in Southern part of Jordan Valley, Jordan. Arab. Jour. Geosci, v.7, pp.2815–2829, DOI:10.1007/s12517-013-0995-1.

    Article  Google Scholar 

  • Harbaugh, A.W., Banta, E.R., Hill, M.C. and Mcdonald, M.G. (2000) MODFLOW-2000, The US Geological Survey Modular Ground-water Model-Users guide to modularization concepts and the groundwater flow process. US Geological Survey Open - File Report 00–92,121.

    Google Scholar 

  • Huan, H., Wang, J. and Teng, Y. (2012) Assessment and validation of groundwater vulnerabillity to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China. Elsevier, v.440, pp.14–23. DOI: 10.1016/j.scitotenv.2012.08.037.

    Google Scholar 

  • Kaliraj, S., Chandrasekar, N., Peter, T.S., Selvakumar, S. and Magesh N.S. (2015) Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model. Environ. Monit. Assess., v.187, pp.4073. DOI 10.1007/s10661-014-4073-2.

    Article  Google Scholar 

  • Knox, R.C., Sabatini, D.A. and Canter, L.W. (1993). Subsurface transport and fate processes. USA: Lewis Publishers.

    Google Scholar 

  • Krishnaraj, S., Vijayaraghavan, K., Vasanthavigar, K, Sarma, M., Rajivgandhi, V.S., Chidambaram, R., Anandhan S.P. and Manivannan, R. (2010) Assessment of groundwater vulnerability in Mettur region, Tamilnadu, India using drastic and GIS techniques. Arabian Jour. Geosci., v.4(7-8). DOI: 10.1007/s12517-010-0138-x.

    Google Scholar 

  • Kumar, S., Thirumalaivasan, D. and Radhakrishnan, N. (2015) GIS Based Assessment of Groundwater Vulnerability Using Drastic Model. Arab Jour. Sci. Engg., v.39, pp.207–216. DOI:10.1007/s13369-013-0843-3.

    Article  Google Scholar 

  • Nasher, G.S.A. (2007) Hydrogeological, Hydrogeochemical and Environmental Evaluation of The Intercatchment Area Between Wadi Shueib and Zarqa River, Jordan. University of Jordan.

    Google Scholar 

  • National Research Council (1993) Groundwater vulnerability assessment, contaminant potential under conditions of uncertainity. Washington, DC: National Academy Press.

  • Navulur, K.C.S. and Engel, B.A. (1998) Groundwater vulnerability assessment to non-point source nitrate pollution on a regional scale using GIS. Trans. Amer. Soc. Agricultural Engineers, v.41, pp.1671–167.

    Article  Google Scholar 

  • Nawafleh, A.S.M. (2007) GIS-based modeling of groundwater vulnerability and hydrochemistry in Irbid governorate. University of Jordan.

    Google Scholar 

  • Neshat, A., Pradhan, B., Pirasteh, S., Shafri, H.Z.M. (2014) Estimating groundwater vulnerability to pollution using a modiûed DRASTIC model in the Kerman agricultural area, Iran. Environ. Earth Sci., v.71, pp.3119–3131. DOI: 10.1007/s12665-013-2690-7.

    Article  Google Scholar 

  • Piscopo, G. (2001) Groundwater vulnerability map, explanatory notes, Castlereagh Catchment, NSW. Department of Land and Water Conservation, Australia, Found at: http://www.dlwc.nsw.gov.au/care/water/groundwater/reports/pdfs/castlereagh_map_notes.pdf

    Google Scholar 

  • Rahman, A. (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Science Direct, v.28, pp.32–53. DOI:10.1016/j.apgeog.

    Google Scholar 

  • Rao, S.M. and Mamatha, P. (2004) Water quality in sustainable water management. Curr. Sci., v. 87(7), pp.942–947.

    Google Scholar 

  • Rundquist, D.C., Peters, A.J., Liping, D., Rodekohr, D.A., Ehrman, R.L. and Murray, G. (1991). State-wide groundwater vulnerability assessment in Nebraska using the DRASTIC/GIS model. Geo Cartography International, v.6, pp.51–58.

    Google Scholar 

  • Saaty, T.L. and Vargas, G.L. (1991) Prediction, Projection and Forecasting. Kluwer Academic Publishers, Dordrecht. Ed.1.

    Book  Google Scholar 

  • Secunda, S., Collin, M. and Melloul, A. J. (1998) Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive land use in Israel’s Sharon region. Jour. Environ. Managmt., v.54, pp.39–57.

    Article  Google Scholar 

  • Sener, E. and Davraz, A. (2013) Assessment of groundwater vulnerability based on a modiûed DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeol. Jour., v.21, pp.701–714. DOI: 10.1007/s10040-012-0947-y.

    Article  Google Scholar 

  • Sener, S., Sener, E., Nas, B. and Karagüzel, R. (2010) Combining AHP with GIS for landûll site selection: Acase study in the Lake Beysehir catchment area (Konya, Turkey). Waste Management, v.30, pp.2037–2046.

    Article  Google Scholar 

  • Shekhar, S., Pandey, A.C. and Tirkey, A.S. (2015) A GIS-based DRASTIC model for assessing groundwater vulnerability in hard rock granitic aquifer. Arab. Jour. Geosci., v.8, pp.1385–1401. DOI: 10.1007/s12517-014-1285-2.

    Article  Google Scholar 

  • Shirazi, S.M., Imran, H.M., Akib S., Yusop, Z., Z. and Harun, B. (2013) Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques. Environ. Earth Sci., v.70(5), pp.2293–2304. DOI: 10.1007/s12665-013-2360-9.

    Article  Google Scholar 

  • Sinha, M. K., Verma, M. K., Ahmad, I., Baier, K., Jha, R. and Azzam, R. (2015) Assessment of groundwater vulnerability using modified DRASTIC model in Kharun Basin, Chhattisgarh, India. Arab Jour. Geosci., v.9, pp.98. DOI: 10.1007/s12517-015-2180-1.

    Article  Google Scholar 

  • Srinivasamoorthy, K., Vijayaraghavan, K., Vasanthavigar, M., Sarma, V. S., Rajivgandhi, R., Chidambaram, S., Anandhan, P. and Manivannan, R. (2011) Assessment of groundwater vulnerability in Mettur region, Tamil Nadu, India using drastic and GIS techniques. Arab Jour. Geosci., v.4, pp.1215–1228. DOI: 10.1007/s12517-010-0138-x.

    Article  Google Scholar 

  • Tesoriero, A.J., Inkpen, E.L. and Voss, F.D. (1998) Assessing groundwater vulnerability using logistic regression. Proceedings for the Source Water Assessment and Protection 98 Conference, Dallas, TX, pp.157–165.

    Google Scholar 

  • Tirkey, P., Gorai, A.K. and Iqbal, J. (2013) AHP-GIS Based DRASTIC Model for Groundwater Vulnerability to Pollution Assessment: A Case Study of Hazaribagh District, Jharkhand, India. Internat. Jour. Environ. Protection, v.2(3), pp.20–31.

    Google Scholar 

  • Wen, X., Wu, J. and Si, J. (2009) A GIS-based DRASTIC model for assessing shallow groundwater vulnerability in the Zhangye Basin, northwestern China. Environ. Geol., v.57, pp.1435–1442. DOI: 10.1007/s00254-008-1421-y.

    Article  Google Scholar 

  • Wu, W., Yin, S., Liu H. and Chen, H. (2014) Groundwater Vulnerability Assessment and Feasibility Mapping Under Reclaimed Water Irrigation by a Modified DRASTIC Model. Water Resour. Managmt., v.28, pp.1219–1234. DOI: 10.1007/s11269-014-0536-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubia Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Jhariya, D.C. Assessment of Groundwater Pollution Vulnerability Using GIS Based Modified DRASTIC Model in Raipur City, Chhattisgarh. J Geol Soc India 93, 293–304 (2019). https://doi.org/10.1007/s12594-019-1177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1177-x

Navigation