Skip to main content

Advertisement

Log in

Influence of permeability in modeling of reservoir triggered seismicity in Koyna region, western India

  • Published:
Journal of the Geological Society of India

Abstract

The Koyna region located in the west coast of India is a classic example of reservoir triggered seismicity (RTS) that started soon after the impoundment of the Koyna reservoir in 1962. Previous studies have shown that RTS can be explained in terms of stress and pore pressure changes due to poroelastic response of the rock matrix. The permeability of rock matrix is a key parameter for pore pressure diffusion which is mainly responsible for generation of stress perturbation related to seismicity. Based on the poroelastic theory, we employ 2-D finite element models to simulate the evolution of pore pressure up to 5 years after the reservoir impoundment in 1962, using a range in permeability, 10−16–10−14 m2. Constraints on material properties of Deccan basalt and granitic rocks were taken from available studies. The results show the formation of pore pressure front and its propagation with depth and time since the reservoir impoundment as a function of permeability. While a permeability of 10−16 m2 does not produce any significant change in pore pressure, a ten-fold increase in permeability produces significant changes up to a depth of 2 km only beneath the reservoir after 5 years of impoundment. Permeability values between 10−15 m2 and 10−14 m2 are required to induce critical pore pressure changes in the range 0.1–1 MPa up to depth of 10 km, capable of triggering earthquakes in a critically stressed region. Studies on core samples of granitic basement rock down to a depth of 1522 m in the Koyna region provide evidences of fracture zones that may contribute to water channelization. Direct measurements of material properties through the ongoing deep drilling programme would help to develop more realistic models of RTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, M.L. and Nur, A. (1978) Strength changes due to reservoir-induced pore pressure and stresses and application to Lake Oroville. Jour. Geophys. Res., v.83, pp.4469–4483.

    Article  Google Scholar 

  • Biot, M.A. (1941) General theory of three-dimensional consolidation. Jour. Appl. Phys., v.12, pp.155–164.

    Article  Google Scholar 

  • Brace, W.F. (1984) Permeability of Crystalline Rock: New in-situ measurements. Jour. Geophys. Res., v.89, pp.4327–4330.

    Article  Google Scholar 

  • Brace, W.F., Walsh, J.B. and Frangos, W.T. (1968) Permeability of Granite under High Pressure. Jour. Geophys. Res., v.73, pp.2225–2236.

    Article  Google Scholar 

  • Detournay, E. and Cheng, A.H.-D. (1993) Fundamentals of poroelasticity. In: J.A. Hudson (Ed.), Comprehensive Rock Engineering, Pergamon Press, New York. Chapter 5, Vol. 2, Analysis and Design Methods, pp. 113–171.

    Google Scholar 

  • Do-Nascimento, A.F., Lunn, R.J., and Cowie, P.A. (2005) Numerical modeling of pore pressure diffusion in a reservoir-induced seismicity site in northeast Brazil. Geophys. Jour. Int., v.160, pp.249–262.

    Article  Google Scholar 

  • Durá-Gómez, I. and Talwani, P. (2010) Hydromechanics of the Koyna–Warna region, India. Pure Appld. Geophys., v.167(1), pp.183–213.

    Article  Google Scholar 

  • Gahalaut, K. and Chander, R. (2000) Green’s function based stress diffusion solutions in the porous elastic half space for time varying finite reservoir loads. Phys. Earth Planet. Internat., v.120, pp.93–101.

    Article  Google Scholar 

  • Gahalaut, K. and Gupta, P.K. (2010) An integral equation algorithm for 3-D simulation of pore pressure in a porous elastic medium with heterogeneities. Geophys. Jour. Internat., v.175, pp.1245–1253.

    Article  Google Scholar 

  • Gavrilenko, P., Singh, C. and Chadha, R.K. (2010) Modeling the hydromechanical response in the vicinity of the Koyna reservoir (India): Results for the initial filling period. Geophys. Jour. Internat., v.183(1), pp.461–477.

    Article  Google Scholar 

  • Geraud, Y., Rosener, M., Surma, F., Place, J. et al., Garzic, E. and Diraison, M. (2010) Physical properties of fault zones within a granite body: Example of the Soultz-sous-Forets geothermal site, C.R. Geoscience, v.342, pp.566–574.

    Article  Google Scholar 

  • Gough, D.I. and Gough, W.I. (1970a) Stress and deflection in the lithosphere near Lake Kariba-1. Geophys. Jour. Internat., v.21, pp.65–78.

    Article  Google Scholar 

  • Gough, D.I. and Gough, W.I. (1970b) Load induced earthquakes at Kariba-2. Geophys. Jour. Internat., v.21, pp.79–101.

    Article  Google Scholar 

  • Grasso, J. R., Guyoton, F., Frechet, J. and Gammond, J.F. (1992) Triggered earthquakes as stress gauge: implication for the upper crust behaviour in the Grenoble area, France. Pure Appld. Geophys., v.139, pp.579–605.

    Article  Google Scholar 

  • Guha, S.K., Gosavi, P.D., Varma, M., Agarwal, S.P., Padale, J.G. and Marwadi, S.C. (1968) Recent seismic disturbances in the Koyna Hydroelectric Project, Maharashtra, India. Report, Central Water and Power Research Station, India.

    Google Scholar 

  • Guha Roy, D., Vishal, V. and Singh, T.N. (2016) Effect of carbon dioxide sequestration on the mechanical properties of Deccan basalt. Environ. Earth Sci., v 75:711 pp. 1–13.

    Google Scholar 

  • Gupta, H.K., Rastogi, B.K. and Narain, H. (1972) Common features of the reservoir associated seismic activities. Bull. Seism. Soc. Amer., v.62, pp.481–492.

    Google Scholar 

  • Gupta, H.K. and Rastogi, B.K. (1976) Dams and Earthquakes. Elsevier, Amsterdam.

    Google Scholar 

  • Gupta, H.K. (1992) Reservoir-Induced Earthquakes. Elsevier, Amsterdam.

    Google Scholar 

  • Gupta, H.K. (2001) Short-term earthquake forecasting may be feasible at Koyna, India. Tectonophysics, v.338, pp.353–357.

    Article  Google Scholar 

  • Gupta, H.K. (2002) A review of artificial reservoir triggered earthquakes with special emphasis on earthquakes in Koyna, India. Earth Sci. Rev. v.58, pp.279–310.

    Article  Google Scholar 

  • Gupta, H. (2011) Artificial water reservoir triggered earthquakes. In: Encyclopaedia of Solid Earth Geophysics, H. Gupta (Ed.), Springer, Berlin, pp.15–24.

    Chapter  Google Scholar 

  • Gupta, H.K., Shashidhar, D., Mahato, C.R., Satyanarayana, H.V.S., Mallika, K., Purnachandra Rao, N., Maity, B.S. and Navitha, K. (2017) Location of the pilot borehole for investigations of reservoir triggered seismicity at Koyna, India. Gondwana Res., v.42 pp.133–139.

    Article  Google Scholar 

  • Kranz, R.L., Frankel, A.D., Engelder, T. and Scholz, C.H. (1979) The permeability of whole and jointed Barre Granite. Internat. Jour. Rock Mech. Min. Sci. & Geomech. Abstr. 16, pp.225–234.

    Article  Google Scholar 

  • Pandey, A. P. and Chadha, R. K. (2003) Surface loading and triggering earthquakes in the Koyna–Warna region, Western India. Phys. Earth Planet. Internat., v.139, pp.207–223.

    Article  Google Scholar 

  • Rastogi, B.K., Chadha, R.K., Sarma, C.S.P., Mandal, P., Satyanarayana, H.V.S., Raju, I.P., Kumar, N., Satyamurthy, C. and Nageswara Rao, A. (1997) Seismicity at Warna reservoir (near Koyna) through 1995. Bull. Seism. Soc. Amer., v.87(6), pp.1484–1494.

    Google Scholar 

  • Rice, J.R. and Cleary, M.P. (1976) Some basic stress-diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys., v.14, pp.227–241.

    Article  Google Scholar 

  • Roeloffs, E.A. (1988) Fault stability changes induced beneath a reservoir with cyclic variations in water Level. Jour. Geophys. Res., v.93, pp.2107–2124.

    Article  Google Scholar 

  • Roy, S., Rao, N.P., Akkiraju, V.V., Goswami, D., Sen, M., Gupta, H.K., Bansal, B.K., Nayak, S. (2013) Granitic basement below Deccan traps unearthed by drilling in the Koyna Seismic zone, Western India. Jour. Geol. Soc. India, v.81, pp.289–290.

    Article  Google Scholar 

  • Sausse, J., Fourar, M. and Genter, A. (2006) Permeability and alteration within the Soultz granite inferred from geophysical and flow log analysis. Geothermics, v.35(5-6), pp.544–560.

    Article  Google Scholar 

  • Selvadurai, A.P.S., Boulon, M.J. and Nguyen, T.S. (2005) The permeability of an intact granite. Pure Appld. Geophys., v.162, pp.373–407.

    Article  Google Scholar 

  • Simpson, D.W. (1976) Seismicity change associated with the reservoir loading. Engg. Geol., v.10, pp.123–150.

    Article  Google Scholar 

  • Simpson, D.W., Leith, W.S. and Scholz, C.H. (1988) Two types of reservoirinduced seismicity. Bull. Seism. Soc. Amer., v.78, pp.2025–2040.

    Google Scholar 

  • Snow, D.T. (1972) Geodynamics of seismic reservoirs. Proc. Symp. on Percolation through Fissured Rocks. Deut. Ges. Erd-Grundbau Stuttgart, T2-J, pp.1–19.

    Google Scholar 

  • Talwani, P. and Acree, S. (1985) Pore pressure diffusion and the mechanism of reservoir induced seismicity. Pure Appld. Geophys., v.122, pp.947–965.

    Article  Google Scholar 

  • Talwani, P. (1997) On the nature of reservoir-induced seismicity. Pure Appld. Geophys., v.150, pp.473–492.

    Article  Google Scholar 

  • Talwani, P., Chen, L. and Gahalaut, K. (2007) Seismogenic permeability, ks. Jour. Geophys. Res., v.112, B07309.

    Article  Google Scholar 

  • Tao, W., T. Masterlark, Z.-K. Shen, and E. Ronchin (2015) Impoundment of the Zipingpu reservoir and triggering of the 2008 Mw 7.9 Wenchuan earthquake, China. Jour. Geophys. Res., v.120, doi:10.1002/2014J B011766.

  • Trimmer, D., Bonner, B., Heard, H.C. and Duba, A. (1980) Effect of pressure and stress on water transport in intact and fractured gabbro and granite. Jour. Geophys. Res., v.85, pp.7059–7071.

    Article  Google Scholar 

  • Wang, H.F. (2000) Theory of Linear Poroelasticity: With Applications to Geomechanics and Hydrogeology. Princeton Univ. Press, Princeton and Oxford.

    Google Scholar 

  • Yadav, A., Gahalaut, K., Mallika, K. and Rao, N.P. (2015). Annual periodicity in the seismicity and water levels of the Koyna and Warna Reservoirs, Western India: A singular spectrum analysis. Bull. Seism. Soc. Amer., v.105(1), pp.464–472.

    Article  Google Scholar 

  • Yadav, A., Bansal, B.K. and Pandey, A.P. (2016) Five decades of triggered earthquakes in Koyna–Warna Region, western India: A review. Earth Sci. Rev., v.162, pp.433–450.

    Article  Google Scholar 

  • Yadav, A., Gahalaut, K. and Rao, N.P. (2017) 3-D modeling of pore pressure diffusion beneath Koyna and Warna reservoirs, Western India. Pure Appld. Geophys., v.174(5), pp.2121–2132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, P., Yadav, A. & Roy, S. Influence of permeability in modeling of reservoir triggered seismicity in Koyna region, western India. J Geol Soc India 90, 728–732 (2017). https://doi.org/10.1007/s12594-017-0782-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0782-9

Navigation