Skip to main content
Log in

3-D Modeling of Pore Pressure Diffusion Beneath Koyna and Warna Reservoirs, Western India

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The mechanism of reservoir-triggered seismicity is well-understood and explains the earthquake occurrence at different reservoir sites. It can be attributed to the stresses due to water loading and to changes in fluid pressure in pores within the rock matrix. In the present study a 3-D fluid flow numerical model is used to investigate the pore pressure diffusion as a cause for continued seismicity in the Koyna–Warna region in western India. It is shown that reservoir water level fluctuations are sufficient to trigger earthquakes at the seismogenic depths in the region. Our numerical model suggests that a vertical fault with hydraulic conductivity in the range 2–6 m/day facilitates the diffusion of pressure at focal depths of earthquakes in the Koyna–Warna region. Also, for triggering of earthquakes a higher vertical conductivity is required for the Warna region than for the Koyna region. A lag of two months period is found between the maximum water level and the significant hydraulic head required to trigger earthquakes at the focal depth using the appropriate hydraulic conductivity for both the reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baecher, B. G., & Keeney, R. L. (1982). Statistical examination of reservoir induced seismicity. Bulletin of the Seismological Society of America, 72, 553–569.

    Google Scholar 

  • Bell, M. L., & Nur, A. (1978). Strength changes due to reservoir-induced pore pressure and stresses and application to Lake Oroville. Journal of Geophysical Research, 83, 4469–4483.

    Article  Google Scholar 

  • Carder, D. S. (1945). Seismic investigation in the Boulder Dam area, 1940–1944, and the influence of reservoir loading on earthquake activity. Bulletin of the Seismological Society of America, 35, 175–192.

    Google Scholar 

  • Chen, L., & Talwani, P. (2001). Mechanism of initial seismicity following impoundment at the Monticello Reservoir, South Carolina. Bulletin of the Seismological Society of America, 91, 1582–1594.

    Article  Google Scholar 

  • Cheng, H., Shi, Y., & Zhang, H. (2013). Application of Poroelastic FEM model to the ML5.7 earthquake triggered by the Aswan Reservoir. American Geophysical Union, Fall Meeting, abstract, T11C-2468.

  • Do-Nascimento, A. F., Lunn, R. J., & Cowie, P. A. (2005). Numerical modelling of pore-pressure diffusion in a reservoir-induced seismicity site in northeast Brazil. Geophysical Journal International, 160, 249–262.

    Article  Google Scholar 

  • Durá-Gómez, I., & Talwani, P. (2010). Hydromechanics of the Koyna–Warna region, India. Pure and Applied Geophysics, 167(1), 183–213.

    Article  Google Scholar 

  • Gahalaut, K., & Chander, R. (2000). Green’s function based stress diffusion solutions in the porous elastic half space for time varying finite reservoir loads. Physics of the Earth and Planetary Interiors, 120, 93–101.

    Article  Google Scholar 

  • Gahalaut, K., & Gahalaut, V. K. (2010). Effect of the Zipingpu reservoir impoundment on the occurrence of the 2008 Wenchuan earthquake and local seismicity. Geophysical Journal International, 183, 277–285.

    Article  Google Scholar 

  • Gahalaut, K., & Hassoup, A. (2012). Role of fluids in the earthquake occurrence around Aswan reservoir, Egypt. Journal of Geophysical Research, 117, B(2).

    Article  Google Scholar 

  • Gahalaut, K., Tuan, T. A., & Rao, N. P. (2016). Rapid and delayed earthquake triggering by the Song Tranh 2 reservoir, Vietnam. Bulletin of the Seismological Society of America. doi:10.1785/0120160106.

    Google Scholar 

  • Gavrilenko, P., Singh, C., & Chadha, R. K. (2010). Modelling the hydromechanical response in the vicinity of the Koyna reservoir (India): Results for the initial filling period. Geophysical Journal International, 183(1), 461–477.

    Article  Google Scholar 

  • Gough, D. I., & Gough, W. I. (1970a). Stress and deflection in the lithosphere near Lake Kariba-1. Geophysical Journal International, 21, 65–78.

    Article  Google Scholar 

  • Gough, D. I., & Gough, W. I. (1970b). Load induced earthquakes at Kariba-2. Geophysical Journal International, 21, 79–101.

    Article  Google Scholar 

  • Grasso, J. R., Guyoton, F., Frechet, J., & Gammond, J. F. (1992). Triggered earthquakes as stress gauge: implication for the upper crust behaviour in the Grenbole area, France. Pure and Applied Geophysics, 139, 579–605.

    Article  Google Scholar 

  • Gupta, H. K. (1992). Reservoir-induced earthquakes (p. 33). Amsterdam: Elsevier.

    Google Scholar 

  • Gupta, H. K. (2001). Short-term earthquake forecasting may be feasible at Koyna, India. Tectonophysics, 338, 353–357.

    Article  Google Scholar 

  • Gupta, H. K. (2002). A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth Science Review, 58, 279–310.

    Article  Google Scholar 

  • Gupta, H. K., & Rastogi, B. K. (1976). Dams and earthquakes. Amsterdam: Elsevier.

    Google Scholar 

  • Gupta, H. K., Rastogi, B. K., & Narain, H. (1972). Common features of the reservoir associated seismic activities. Bulletin of the Seismological Society of America, 62, 481–492.

    Google Scholar 

  • Gupta, H. K., Radhakrishna, I., Chadha, R. K., Kümpel, H. -J., & Grecksch, G. (2000). Pore pressure studies initiated in an area of reservoir-induced earthquakes in India. Eos, Transactions American Geophysical Union, 81(14), 145–156.

    Article  Google Scholar 

  • Gupta, H. K., Shashidhar, D., Mallika, K., Rao, N. P., Srinagesh, D., Satyanarayana, H. V. S., et al. (2011). Short term earthquake forecasts at Koyna, India. Journal of Geological Society of India, 77, 5–11.

    Article  Google Scholar 

  • Langston, C. A. (1981). Source inversion of seismic waveforms: the Koyna, India, earthquakes of 13 September 1967. Bulletin of the Seismological Society of America, 71, 1–24.

    Google Scholar 

  • McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model, U.S. Washington: Geological Survey Techniques of Water-Resources Investigations, Book 6.

    Google Scholar 

  • Morgan, W. J. (1972). Deep mantle convection plumes and plate motions. Bulletin of the Seismological Society of America, 56, 203–213.

    Google Scholar 

  • Pandey, A. P., & Chadha, R. K. (2003). Surface loading and triggering earthquakes in the Koyna–Warna region, Western India. Physics of the Earth and Planetary Interiors, 139, 207–223.

    Article  Google Scholar 

  • Rajendran, K., & Harish, C. M. (2000). Mechanism of triggered seismicity at Koyna: an assessment based on relocated earthquake during 1983–1993. Current Science, 79(3), 358–363.

    Google Scholar 

  • Rao, N. P., & Shashidhar, D. (2016). Periodic variation of stress field in the Koyna–Warna reservoir triggered seismic zone inferred from focal mechanism studies. Tectonophysics, 679, 29–40.

    Article  Google Scholar 

  • Rao, B. R., & Singh, C. (2007). Temporal migration of earthquakes in Koyna–Warna (India) region by pore-fluid diffusion. Journal of Seismology, 12, 547–556.

    Article  Google Scholar 

  • Rastogi, B. K., Chadha, R. K., Sarma, C. S. P., Mandal, P., Satyanarayana, H. V. S., Raju, I. P., et al. (1997a). Seismicity at Warna reservoir (near Koyna) through 1995. Bulletin of the Seismological Society of America, 87(6), 1484–1494.

    Google Scholar 

  • Rastogi, B. K., & Mandal, P. (1999). Foreshocks and Nucleation of Small- to Moderate-Sized Koyna Earthquakes (India). Bulletin of the Seismological Society of America, 89, 829–836.

    Google Scholar 

  • Rastogi, B. K., Mandal, P., & Kumar, N. (1997b). Seismicity around Dhamni Dam, Maharashtra, India. Pure and Applied Geophysics, 150(3/4), 493–509.

    Article  Google Scholar 

  • Rice, J. R., & Cleary, M. P. (1976). Some basic stress-diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Reviews of Geophysics and Space Physics, 14, 227–241.

    Article  Google Scholar 

  • Roeloffs, E. A. (1988). Fault stability changes induced beneath a reservoir with cyclic variations in water Level. Journal of Geophysical Research, 93, 2107–2124.

    Article  Google Scholar 

  • Shashidhar, D., Rao, N. P., & Gupta, H. K. (2011). Waveform inversion of local earthquakes using broad band data of Koyna–Warna region, western India. Geophysical Journal International, 185, 292–304.

    Article  Google Scholar 

  • Simpson, D. W. (1976). Seismicity change associated with the reservoir loading. Engineering Geology, 10, 123–150.

    Article  Google Scholar 

  • Simpson, D. W., Leith, W. S., & Scholz, C. H. (1988). Two types of reservoir-induced seismicity. Bulletin of the Seismological Society of America, 78, 2025–2040.

    Google Scholar 

  • Snow, D. T. (1972). Geodynamics of seismic reservoirs. In Proceedings of the symposium on percolation through fissured rocks, Deut. Ges. Erd-Grundbau Stuttgart, T2-J, 1-19.

  • Srinagesh, D., & Rajagopala Sarma, P. (2005). High precision earth-quake locations in Koyna–Warna seismic zone reveal depth variation in brittle-ductile transition zone. Geophysical Research Letter, 32, L08310.

    Article  Google Scholar 

  • Talwani, P. (1997). Seismotectonics of the Koyna–Warna area, India. Pure and Applied Geophysics, 150, 511–550.

    Article  Google Scholar 

  • Talwani, P., Chen, L., & Gahalaut, K. (2007). Seismogenic permeability, ks. Journal of Geophysical Research, 112, B07309.

    Article  Google Scholar 

  • Tao, W., Masterlark, T., Shen, Z. K., & Ronchin, E. (2015). Impoundment of the Zipingpu reservoir and triggering of the 2008 Mw 7.9 Wenchuan earthquake, China. Journal of Geophysical Research, 112(10), 7033–7047.

    Google Scholar 

  • White, R. S., & McKenzie, D. P. (1989). Magmatism at rift zones: the generation of volcanic continental margins and flood basalt. Journal of Geophysical Research, 94, 7685–7729.

    Article  Google Scholar 

  • Yadav, A., Bansal, B. K., & Pandey, A. P. (2016). Five decades of triggered earthquakes in Koyna–Warna Region, Western India: A review. Earth-Science Reviews, 162, 433–450. doi:10.1016/j.earscirev.2016.09.013.

    Article  Google Scholar 

  • Yadav, A., Gahalaut, K., Mallika, K., & Rao, N. P. (2015). Annual periodicity in the seismicity and water levels of the Koyna and Warna Reservoirs, Western India: A singular spectrum analysis. Bulletin of the Seismological Society of America, 105(1), 464–472.

    Article  Google Scholar 

Download references

Acknowledgements

The work was carried out under the Koyna Project sponsored by the Ministry of Earth Sciences, Govt. of India, New Delhi. Authors are thankful to Dr. Brijesh K. Bansal, Head Geosciences, MoES for the support in carrying out this work. A profound sense of gratitude is expressed to Ajeet Pandey for insightful discussions on the presented work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A., Gahalaut, K. & Purnachandra Rao, N. 3-D Modeling of Pore Pressure Diffusion Beneath Koyna and Warna Reservoirs, Western India. Pure Appl. Geophys. 174, 2121–2132 (2017). https://doi.org/10.1007/s00024-017-1519-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1519-9

Keywords

Navigation