Skip to main content
Log in

Kinematic vorticity analysis along the Karakoram Shear Zone, Pangong Mountains, Karakoram: Implications for the India–Asia tectonics

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

The Karakoram Shear Zone (KSZ) is a northwest-southeast trending dextral ductile shear zone that has mylonitized the Tangste and Darbuk granitoids of the southern margin of the Asian plate. Kinematic vorticity (Wk) has been estimated in 6 mylonitized Tangste granite samples, using Porphyroclast Hyperbolic Distribution (PHD) and Shear Band (SB) Analyses methods on well-developed quartz and feldspar porphyroclasts, and synthetic and antithetic shear bands respectively to visualize the overall deformation of the KSZ. The PHD and SB analyses yield Wk values ranging from Wk=0.29 to 0.43 and 0.45 to 0.93, respectively, thus indicating distinct pure and simple shear dominant regimes during different stages of the evolution of the KSZ. Strain has essentially been pure shear when southern edge of the Asian plate was initially juxtaposed against the Indian plate around 70 Ma, and changed to simple shear, possibly during the reactivation of this shear zone during 21-13 Ma to produce the shear bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armijo, R., Tapponnier, P. and Tonglin, H. (1989) Late Cenozoic right-lateral strike slip faulting in southern Tibet. Jour. Geophys. Res., v.94, pp.2787–2838.

    Article  Google Scholar 

  • Avouac, J.-P. and Tapponnier, P. (1993) Kinematic model for active deformation in Central Asia. Geophys. Res. Lett., v.20, pp.895–898.

    Article  Google Scholar 

  • Bobyarchick, A.R. (1986) The eigenvalues of steady flow in Mohr space. Tectonophysics. v.122, pp.35–51.

    Article  Google Scholar 

  • Brown, E.T., Bendick, R., Bourles, D.L., Gaur, V., Molnar, P., Raisbeck, G.M. and Yiou, F. (2002) Slip rates of the Karakoram fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines. Jour. Geophys. Res., v.107(B9) 2192, doi:10.1029/2000JB000100.

    Article  Google Scholar 

  • Boutonnet, E., Leloup, P.H., Arnaud, N., Paquette, J.-L. and Davis, W.J. (2012) Synkinematic magmatism, heterogeneous deformation, and progressive strain localization in a strikeslip shear zone: The case of the right-lateral Karakorum fault. Tectonics, v.31, TC4012, doi:10.1029/2011TC003049.

    Article  Google Scholar 

  • Davis, W.J. (2012) Synkinematic magmatism, heterogeneous deformation, and progressive strain localization in a strikeslip shear zone: The case of the right-lateral Karakorum fault. Tectonics, v.31, TC4012, doi:10.1029/2011TC003049.

    Google Scholar 

  • De Paor, D.G. (1988) Rf/f strain analysis using an orientation net. Jour. of Struct. Geol. v.10, pp. 323–333.

    Article  Google Scholar 

  • Dewey, J.F., Shackleton, R.M., Chang, C. and SUN, Y. (1988). The tectonic evolution of the Tibetan Plateau. Phil. Trans. Royal Soc. London, v.327, pp.379–413.

    Google Scholar 

  • Forte, A.M. and Bailey, C.M. (2007) Testing the utility of the porphyroclast hyperbolic distribution method of kinematic vorticity analysis. Jour. Struct. Geol doi:10.1016j.jsg. 2007.01.006

    Google Scholar 

  • Fossen, H. (2010) Structural Geology. Cambridge University Press 978-0-521-51664-8.

    Book  Google Scholar 

  • Jain, A.K. and Singh, S. (2008) Tectonics of the southern Asian Plate margin along the Karakoram Shear Zone: Constraints from field observations and U–Pb SHRIMP ages. Tectonophysics, v.451, pp.186–205.

    Article  Google Scholar 

  • Jain, A.K. and Singh, S. (2009) Geology and tectonics of southeast Ladakh and Karakoram. Geol. Soc. India, 181p.

    Google Scholar 

  • Jain, A.K., Manickavasagam, R.M. and Singh, Sandeep (2002) Himalayan collision tectonics. Gondwana Res. Group Mem., v.7, pp.114.

    Google Scholar 

  • Jain, A.K., Singh, S. and Gupta, K.R. (2007) A late Cretaceous Karakoram Shear zone and its reactivation during the late Cenozoic. Gondwana Res. Group Mem., v.10, pp.77–88.

    Google Scholar 

  • Jain, A.K., Singh, S., Manickavasagam, R.M., Joshi, M. and Verma, P.K. (2003) HIMPROBE Programme: integrated studies on geology, petrology, geochronology and geophysics of the trans-Himalaya and Karakoram. In: T.M. Mahadevan, B.R., Arora and K.R. Gupta, (Eds.), Indian Continental Lithosphere: Emerging Research Trends. Mem. Geol. Soc. India, No.53, pp.1–56.

    Google Scholar 

  • Klepeis, K.A., Daczko, N.R. and Clarke, G.L. (1999) Kinematic vorticity and tectonic significance of superposed mylonites in a major lower crustal shear zone, northern Fiordland, New Zealand. Jour. Struct. Geol., v.21, pp.1385–1405.

    Article  Google Scholar 

  • Kurz, G.A. and Northrup, C.J. (2008) Structural analysis of mylonitic rocks in the Cougar Creek Complex, Oregon–Idaho using the porphyroclast hyperbolic distribution method and potential use of SC’-type extensional shear bands as quantitative vorticity indicators. Jour. Struct. Geol., v.30, pp.1005–1012.

    Article  Google Scholar 

  • Lacassin, R., Valli, F., Arnaud, N., Leloup, P.H., Paquette, J.L., Haibing, L., Tapponnier, P., Chevalier, M.-L., Guillot, S., Maheo, G. and Zhiqin, X. (2004) Large-scale geometry, offset and kinematic evolution of the Karakoram. Earth Planet. Sci. Lett., v.219, pp.255–269.

    Article  Google Scholar 

  • Leloup, P.H., Boutonnet, E., Davis, W.J. and Hattori, K. (2011) Long-lasting intracontinental strike-slip faulting: New evidence from the Karakorum shear zone in the Himalayas. Terra Nova, v. 23, pp.92–99.

    Google Scholar 

  • Lister, G.S. and Snoke, A.W. (1984) C–S mylonites. Jour. Struct. Geol., v.6, pp.617–638.

    Article  Google Scholar 

  • Mamtani, M.A., PAL, T. and Greiling, R.O. (2013) Kinematic analysis using AMS data from a deformed granitoid. Jour. Struct. Geol., v.50, pp.119–132. doi:10.1016/j.jsg.2012.03.002.

    Article  Google Scholar 

  • Mamtani, M.A. (2014) Magnetic fabric as a vorticity gauge in syntectonically deformed granitic rocks. Tectonophysics, v.629, pp.189–196.

    Article  Google Scholar 

  • Murphy, M.A., Yin, A., Kapp, P., Harrison, T.M., Ding, L. and Guo, J. (2000) Southward propagation of the Karakoram fault system, southwest Tibet: timing and magnitude of slip. Geology, v.28, pp.451–454.

    Article  Google Scholar 

  • Nyman, M.W., Law, R.D. and Smelik, E. (1992) Cataclastic deformation mechanism for the development of core-mantle structures in amphibole. Geology, v.20, pp.455–458.

    Article  Google Scholar 

  • Passchier, C.W. (1987) Stable positions of rigid objects in noncoaxial flow, a study in vorticity analysis. Jour. Struct. Geol., v.9, pp.679–690.

    Article  Google Scholar 

  • Passchier, C.W. and Simpson, C. (1986) Porphyroblast system as kinematic indicators. Jour. Struct. Geol. v.8, pp.831–844.

    Article  Google Scholar 

  • Passchier, C.W. and Trouw, R.A.J. (1996) Microtectonics, Springer-Verlag. 289 p.

    Google Scholar 

  • Phillips, R.J., Parrish, R.R. and Searle, M.P. (2004) Age constraints on ductile deformation and long-term slip rates along the Karakoram fault zone, Ladakh. Earth Planet. Sci. Lett., v.26, pp.305–319.

    Article  Google Scholar 

  • Phillips, R.J. and Searle, M.P. (2007) Macrostructural and microstructural architecture of the Karakoram Fault: Relationship between magmatism and strike-slip faulting. Tectonics, v.26, TC3017, doi:10.1029/2006TC001946.

    Article  Google Scholar 

  • Rolland, Y. and Pecher, A. (2001) The Pangong granulites of the Karakoram Fault (Western Tibet): vertical extrusion within a lithospheric-scale fault. Comptes Rendus de l’Academy des Sciences, Paris, v.332, pp.363–370.

    Google Scholar 

  • Roy, P., Jain, A.K. and Singh S. (2010) Microstructures of mylonites along the Karakoram Shear Zone, Tangste Valley, Pangong Mountains, Karakoram. Jour. Geol. Soc. India, v.75, pp.679–694, doi:10.1007/s12594-010-0065-1.

    Article  Google Scholar 

  • Rutter, E.H., Faulkner, D.R, Brodie, K.H., Phillips R.J. and Searle, M.P. (2007) Rock deformation processes in the Karakoram fault zone, Eastern Karakoram, Ladakh, NW India. Jour. Struct. Geol., v.15, pp.1315–1326.

    Article  Google Scholar 

  • Searle, M.P. (1996) Geological evidence against large-scale pre-Holocene offsets along the Karakoram Fault: implications for the limited extrusions of the Tibetan Plateau. Tectonics, v.15, pp.171–186.

    Article  Google Scholar 

  • Simpson, C. and De Paor, D.G. (1993) Strain and kinematic analysis in general shear zones. Jour. Struct. Geol., v.15, pp.1–20.

    Article  Google Scholar 

  • Simpson, C. and De Paor, D.G. (1997) Practical analysis of general shear zones using the porphyroclast hyperbolic distribution method: an example from the Scandinavian Caledonides. In: Sengupta, S. (Ed.),. Chapman & Hall, London, pp. 169–184.

  • Singh, S., Kumar, R., Barley, M.E. and Jain, A.K. (2007) SHRIMP U–Pb ages and depth of emplacement of Ladakh Batholith, eastern Ladakh, India. Jour. Asian Earth Sci., v.30, pp.490–503.

    Article  Google Scholar 

  • Srimal, N. (1986) India–Asia collision: implications from the geology of the eastern Karakoram. Geology, v.14, pp.523–527.

    Article  Google Scholar 

  • Tikoff, B. and Fossen, H. (1995) The limitations of threedimensional kinematic vorticity analysis. Jour. Struct. Geol., v.17, pp.1771–1784.

    Article  Google Scholar 

  • Valli, F., Leloup, P.H., Paquette, J.-L., Arnaud, N., Li, H., Tapponnier, P., Lacassin, R., Guillot, ST., Liu, D., Deloule, E., Xu, Zh. and Mahéo, G. (2008) New U-Th/Pb constraints on timing of shearing and long-term slip-rate on the Karakorum fault. Tectonics, v.27, TC5007, doi:10.1029/2007TC002184.

    Article  Google Scholar 

  • Wallis, S.R. (1995) Vorticity analysis and recognition of ductile extension in the Sanbagawa belt, SW Japan. Jour. Struct. Geol., v.17, pp.1077–1093.

    Article  Google Scholar 

  • Wallis, S.R., Platt, J.P. and Knott, S.D. (1993) Recognition of syn-convergence extension in accretionary wedges with examples from the Calabrian Arand the Eastern Alps. Amer. Jour. Sci., v.293, pp.463–494.

    Article  Google Scholar 

  • Weinberg, R.F., Dunlap, W.J. and Whitehouse, M. (2000) New field, structural and geochronological data from the Shyok and Nubra valleys, northern Ladakh: linking Kohistan to Tibet. In: Khan, M.A., Treloar, P.J., Searle, M.P., Jan, M.Q. (Eds.), Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya. Geol. Soc. London Spec. Publ., v.170, pp.253–275.

    Google Scholar 

  • Xypolias, P. (2010) Vorticity analysis in shear zones: A review of methods and applications. Jour. Struct. Geol. v.32, pp.2072–2092.

    Article  Google Scholar 

  • Yin, A., Harrison, T.M., Murphy, M.A., Grove, M., Nie, S., Ryerson, F.J., Feng, Wang Xiao and LE, Chen Zheng (1999) Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision. Geol. Soc. Amer. Bull., v.111, pp.1644–1664.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P., Jain, A.K. & Singh, S. Kinematic vorticity analysis along the Karakoram Shear Zone, Pangong Mountains, Karakoram: Implications for the India–Asia tectonics. J Geol Soc India 87, 249–260 (2016). https://doi.org/10.1007/s12594-016-0392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-016-0392-y

Keywords

Navigation